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Outline

Motivation. Study non-linearity in Generalized Linear Bandits (GLBs).

I Sequential decision making problems
I Isolate the interaction non-linearity ↔ exploration/exploitation trade-off.

Previous studies. Non-linearity is harmful.

I The more non-linear, the harder the problem.
I Status-quo since ≈ 10 years.

Today. A different story:

I Improved algorithms and refined analysis.
I Effects of non-linearity are short-term (and not always detrimental).
I Even better! in some cases:

The more non-linear, the easier the problem.
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Motivation and Setting



A motivating example (1/3)

News recommandation. Among others (e.g clinical trials, ..).
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A motivating example (2/3)

Formalization: stochastic bandit framework.

Agent

Environment

action
at ∈ A

noisy reward
rt+1 = r(at) + noise

Goal: minimize Regret(T ) = T maxa r(a)−∑T
t=1 r(at).

Challenge: observe (noisy) reward only for the action we play.

I exploration/exploitation dilemma.
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A motivating example (3/3)

Modelling the reward function.

Challenges.

(1) Large action space A but interrelated payoffs.
(2) Learn from continuous / binary / ordinal / categorical feedback.
(3) Theoretical guarantees: Regret(T ) = o(T ).

Solution for (1): establish structure through parametric model.

I Embed A in Rd with d� |A| (feature map)
I Reward function belongs to known parametric family:

E [rt+1|at] = fθ?(at) where fθ? ∈
{
fθ : Rd 7→ R, θ ∈ Θ

}
,

where θ? is shared but unknown.
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Generalized Linear Bandits [Filippi et al. 2010]

Expected reward follows a Generalized Linear model:

E [rt+1|at] = µ(at
>θ?)

where µ is continuously differentiable, strictly increasing.

Reward distribution. Exponential family with underlying linear structure:

dP(r|a) ∝ exp(r a>θ? − b(a>θ?))dν(r)

covers Gaussian, Bernoulli, Poisson, .. distributions. → challenge (2).

Learnability. Maximum-likelihood principle

θ̂t := argminθ

t−1∑

s=1

− log dP(rt+1|at)/dν(r) + λ‖θ‖2/2 ,
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An illustration: the Logistic Bandit

Logistic Bandit. Structured binary feedback:

rt+1 ∼ Bernoulli(µ(at
>θ?))

where µ(z) = (1 + exp(−z))−1 is the logistic function.

Two-dimensional illustration:

0

0.25

0.5

0.75

1

A

θ?

E
[
rt+1

∣∣at
]
= (1 + exp(−atTθ?))−1
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Generalized Linear Bandits: beyond linearity

Linear Bandit (LB). Special case with µ = Id:

E[rt+1|at] = at
>θ? .

I Well-understood: [Auer. 2002, Dani et al. 2008, Abbasi-Yadkori et al. 2011, ..].
I Minimax-optimal and efficient algorithms:

Regret(T ) = Õ(d
√
T ) .

GLBs. Beyond linearity;

E[rt+1|at] = µµµ(at
>θ?) .

I minimalistic non-linear extension of LB.
I first step towards richer reward signal.
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GLBs: quantifying non-linearity
Level of non-linearity = conditioning of the reward signal = κκκµ(θ?,A).

κκκµ(θ?,A) :=
maxa∈A µ̇(a>θ?)

mina∈A µ̇(a>θ?)
=:

Lµ
`̀̀µ

I the more non-linear the reward signal, the larger κκκµ.
I “distance” from the linear model (κκκµ = 1 for Linear Bandit).
I numerically very large (κκκµ ∝ exp(‖θ?‖) ≈ 103!)
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Previous work, limitations,
contributions.



GLBs: previous work

First studied in the seminal work of [Filippi et al. 2010].
I many extensions: [Li et al. 2017, Jun et al. 2017, Kveton et al. 2019, ..]

Regret upper-bound. With high probability:

Regret(T ) = Õ() .

£ Extend LB tools to generic GLBs.
n Large regret upper bound.
n Over-exploratory algorithms, poor empirical performance.

Learning-theoretic: non-linearity is detrimental!

I the more non-linear the problem, the worse the performance.
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√
T ) .

£ Extend LB tools to generic GLBs.
n Large regret upper bound.

n Over-exploratory algorithms, poor empirical performance.

Learning-theoretic: non-linearity is detrimental!

I the more non-linear the problem, the worse the performance.

Variance-Sensitive Confidence Intervals for Parametric Bandits 10 / 35



GLBs: previous work

First studied in the seminal work of [Filippi et al. 2010].
I many extensions: [Li et al. 2017, Jun et al. 2017, Kveton et al. 2019, ..]

Regret upper-bound. With high probability:

Regret(T ) = Õ(κκκµd
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GLBs: previous approach (1/2)

Algorithmic design. Two main ingredients; at each round t:

1. Confidence set Et(δ) for θ?;

P
(
∀t ≥ 1, θ? ∈ Et(δ)

)
≥ 1− δ .

2. Optimism in face of uncertainty:

play at = argmaxa∈A max
θ∈Et(δ)

µ(a>θ) .

Confidence set from previous works; with V t =
∑t−1
s=1 asa

>
s + λId:

Et(δ) =

{
θ,
∥∥∥θ − θ̂t

∥∥∥
Vt

≤
√
d log(t/δ)/`̀̀µ

}

I Radius ∝ `̀̀µ−1

⇒ large confidence region ⇒ aggressive exploration.
I Learn as slow as in the flattest region, in every direction.
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GLBs: previous approach (2/2)

Analysis. Upper linear bound:

Regret(T ) =
T∑

t=1

µ(a>? θ?)− µ(a>t θ?)

≤ Lµ

T∑

t=1

a>t (θt − θ?)

We pay errors as in the sharpest linear case.
Worst-case errors / worst-case learning.
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GLBs: our approach

Local treatment of non-linearity for improved regret bounds.

New confidence set.
I sensitive to effective reward sensitivity ( 6= worst-case)
I provably tighter.

Locality-sensitive analysis under generalized self-concordance [Bach. 2010]:

|µ̈| ≤ cµ̇

I allows exact Taylor control with local quantities.
I not restrictive: Logistic and Poisson Bandits (c=1).
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Variance-Sensitive Confidence
Sets for GLBs



Improved confidence set: asymptotic intuition

Objective. Dependence to effective reward sensitivity:
I measured through the variance of the reward signal:

Var(rt+1|at) = µ̇(at
>θ?) .

I Variance-sensitive concentration tools.

Asymptotic intuition. Let Ht(θ) =
∑t
s=1 µ̇(a>s θ)asa

>
s .

lim
t→∞

P
(
‖θ̂t − θ?‖2Ht(θ?) ≤ d log(1/δ)

)
≥ 1− δ .

under random design.

Challenge. Generalization for:
I finite-time (non-asymptotic).
I adaptive design ({a1, . . . , as}s are not independent).
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A novel concentration inequality (1/2)

Theorem (F., Abeille, Calauzènes and Fercoq, 2020.)

For δ ∈ (0, 1] the event:

∀t ≥ 1, ‖St+1‖H−1
t
≤
√
λ

2σ
+

2σ√
λ
d log

(
4(1 + σ2t/(dλ)

δ

)
,

holds with probability at least 1− δ.

Let {Ft}t∈N be a filtration and:
{at}t∈N a Ft-measurable stochastic process.

{ηt+1}t∈N a Ft+1-measurable martingale difference sequence s.t:
I |ηt+1| ≤ σ almost surely and υt2 := Var(ηt+1|Ft).

Let λ > 0 and define for t ∈ N:

St+1 :=

t∑

s=1

ηs+1as and Ht :=

t∑

s=1

υs
2asa

>
s + λId
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Theorem (F., Abeille, Calauzènes and Fercoq, 2020.)

For δ ∈ (0, 1] the event:
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d log(t/δ)

)
,

holds with probability at least 1− δ (setting λt = d log(t/δ)).

Let {Ft}t∈N be a filtration and:
{at}t∈N a Ft-measurable stochastic process.
{ηt+1}t∈N a Ft+1-measurable martingale difference sequence s.t:

I |ηt+1| ≤ σ almost surely and υt2 := Var(ηt+1|Ft).
Let λ > 0 and define for t ∈ N:

St+1 :=
t∑

s=1

ηs+1as and Ht :=
t∑

s=1

υs
2asa

>
s + λId

Variance-Sensitive Confidence Intervals for Parametric Bandits 15 / 35



A novel concentration inequality (2/2)

Theorem (F., Abeille, Calauzènes and Fercoq, 2020.)

For δ ∈ (0, 1] the event:

∀t ≥ 1, ‖St+1‖H−1
t
≤ O

(√
d log(t/δ)

)
,

holds with probability at least 1− δ (setting λt = d log(t/δ)).

Sketch of proof.

I Pseudo-maximization (methods of mixture) [de la Peña. 2007].
I Similar to [Abbasi-Yadkori et al. 2011], different base super-martingale:

Mt(ξ) = ξ>St+1 − ‖ξ‖2Ht
for ‖ξ‖ ≤ 1 .

I Bernstein vs. Hoeffding conditions.
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Application to GLBs (1/2)

Using optimality of θ̂t for the regularized log-loss Lλt
t :

∀t ≥ 1,
∥∥∥θ? − θ̂t

∥∥∥
Ht(θ?)

≤
∥∥∥∥∥
t−1∑

s=1

ηs+1as

∥∥∥∥∥
H−1

t (θ?)

= O
(√

d log(t/δ)
)

where:

ηs+1 = rs+1 − µ(a>s θ?) and Ht(θ) =

t∑

s=1

µ̇(a>s θ)asa
>
s + λtId

New confidence set:

Proposition (F., Abeille, Calauzènes and Fercoq, 2020.)
For δ ∈ (0, 1] let:

Ct(δ) :=

{∥∥∥θ − θ̂t
∥∥∥
Ht(θ)

≤ O
(√

d log(t/δ)
)}

.

Then P (∀t ≥ 1, θ? ∈ Ct(δ)) ≥ 1− δ.
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Application to GLBs (2/2)

Ct(δ) =

{∥∥∥θ − θ̂t
∥∥∥
Ht(θ)

≤ O
(√

d log(t/δ)
)}

, (ours)

Et(δ) =

{∥∥∥θ − θ̂t
∥∥∥
V t

≤ O
(√

d log(t/δ)/`̀̀µ
)}

. [Filippi et al.]

Illustration for Logistic Bandit:

−45 45

−45

45

θ?θ?θ?

‖θ?‖ = 2 and 1/`µ ≈ 10

Et(δ)
Ct(δ)

−450 450

−450

450

‖θ?‖ = 5 and 1/`µ ≈ 150

Et(δ)
Ct(δ)
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Extension: convex relaxation

Ct(δ) =

{∥∥∥θ − θ̂t
∥∥∥
Ht(θ)

≤ O
(√

d log(t/δ).
)}

Non-convex, burdensome to manipulate.

Convex relaxation based on log-loss Lt:

Cct (δ)=
{
Lt(θ)− Lt(θ̂t) ≤ O (d log(t/δ))

}
.

−15 15
−12

15

θ?θ?θ?

Ct(δ)

Proposition (Abeille, F. and Calauzènes, 2021)
The following holds:

For all t ≥ 1, Ct(δ) ⊆ Cct (δ) i.e Cct (δ) is a confidence set for θ?.
With proba. at least 1− δ:

∀θ ∈ Cct (δ), ∀t ≥ 1, ‖θ − θ?‖Ht(θ?) ≤ O
(√

d log(t/δ)
)
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Algorithm and regret bounds



OFU-GLB

Algorithm. New ingredients, same recipe.

play at = argmaxa∈A max
θ∈Ct(δ)Ct(δ)Ct(δ)

a>θ .

Pseudo-code.

Algorithm OFU-GLB

input: Arm set A, regularizations {λt}t, failure level δ, norm upper-bound S.
Set H1 ← λ1Id, θ̂1 ← 0d.
for t ∈ [1, T ] do

Solve at ∈ argmaxAmaxθ∈Ct(δ)Ct(δ)Ct(δ) a
>θ. . planning

Play the arm at and observe reward rt+1.
Update the estimator θ̂t+1 and the confidence interval Ct(δ)Ct(δ)Ct(δ). . learning

end for
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OFU-GLB: analysis
Sketch of proof.

Regret(T ) =

T∑

t=1

µ(a>? θ?)− µ(a>t θ?)

≤ d log(T/δ)
√
T µ̇(a?>θ?) + Regret(T ) + κκκµd

2 log(T/δ)2

Bounding ¬:
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OFU-GLB: new regret upper-bound

Theorem (Extends [F., Abeille, Calauzènes, Fercoq (2020))

For all self-concordant GLBs, OFU-GLB satisfies:

Regret(T ) = Õ
(
d
√
µ̇(a?>θ?)T + κκκµd

2

)
,

with probability at least 1− δ.

Non-linearity deferred to second-order term.

for T � κκκµ
2, Regret(T ) = Õ

(
d
√
µ̇(a?>θ?)T

)
.

Exponential improvement over previous work: e.g Logistic Bandit:

(before) Regret(T ) / κκκµd
√
T ,

(now) Regret(T ) / exp(−‖θ?‖/2)d
√
T .
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Transitory and permanent regimes

Making sense of the regret bound:

Regret(T ) = Õ
(
d
√
µ̇(a?>θ?)T + κκκµd

2
)
,

I each term associated to a different regime of algorithm behavior.

Permanent regret ←→ a? ≈ located.

I locally linear with slope µ̇(a?
>θ?).

I e.g flat ⇒ small regret.

0

0.25

0.5

0.75

1

a?a?a?

A
θ?θ?θ?

Transitory regret: how long to find “good” regions of A.

I can be hard because of non-linearity since Rtrans
T ∝ κκκµ.

I coherent with the Bayesian lower-bound of [Dong et al. 2019].

Variance-Sensitive Confidence Intervals for Parametric Bandits 23 / 35



Transitory and permanent regimes

Making sense of the regret bound:

Regret(T ) = Õ
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(
d
√
µ̇(a?>θ?)T + κκκµd

2
)
,

= Rperm
T +Rtrans

T .

I each term associated to a different regime of algorithm behavior.

Permanent regret ←→ a? ≈ located.

I locally linear with slope µ̇(a?
>θ?).

I e.g flat ⇒ small regret.
0

0.25

0.5

0.75

1

a?a?a?

A
θ?θ?θ?

Transitory regret: how long to find “good” regions of A.
I can be hard because of non-linearity since Rtrans

T ∝ κκκµ.

I coherent with the Bayesian lower-bound of [Dong et al. 2019].

Variance-Sensitive Confidence Intervals for Parametric Bandits 23 / 35



Transitory and permanent regimes

Making sense of the regret bound:

Regret(T ) = Õ
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Transitory regret on Logistic Bandit

Detrimental arms: large sub-optimality gap and small information.

Transitory regret = how many times A− is played:

Rtrans
T ≤

T∑

t=1

1 {at ∈ A−} .

AAA

θ?θ?θ?

A−A−A−

Proposition (Abeille, F. and Calauzènes (2021))
For Logistic Bandit if A = Bd the transitory regret satisfies:

Rtrans
T = Õ

(
d3)

← independent of κκκµ!

£ ”Good“ case where non-linearity has no effect on the regret bound.

£ For any T , we have Regret(T ) / d
√
µ̇(a?>θ?)T + d3.
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Non-linearity: a blessing?

The Logistic Bandit case on A = Bd =⇒ no more κκκµ.

Regret(T ) / d
√
µ̇(a?>θ?)T
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The more non-linear the problem, the smaller the regret.
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Numerical simulations



A tractable algorithm

The planning step of OFU-GLB is intractable:

play at = argmaxa∈A max
θ∈Ct(δ)

a>θ .

I the constraint θ ∈ Ct(δ) is non-convex.
I no principled way to solve (even approximately).

Use the convex relaxation Cct (δ):

play at = argmaxa∈A max
θ∈Cct (δ)Cct (δ)Cct (δ)

a>θ .

I tractable when |A| <∞ (solve |A| convex programs).
I same theoretical guarantees.
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Empirical performances

Improved performances compared to GLM-UCB [Filippi et al. 2010]
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(a) κκκµ = 50
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Comparing GLM-UCB and OFU-GLB on toy Logistic Bandit experiments.
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Empirical performances (ctn’d)

Check the impact of non-linearity:
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Figure: Comparing the effect of non-linearity on GLM-UCB and OFU-GLB by
varying the level of non-linearity in a Logistic Bandit setting.
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Logistic Bandit
Regret Lower-Bound



Optimality (1/3)

Are these new regret upper-bounds optimal?
I can we show that for any algorithms, there exist situations where:

Regret(T )≥≥≥ d
√
µ̇(a>? θ?)T + κκκµd

2 .

Why is it challenging?
I involves problem-dependent constants.
I describe a continum of hard situations.
I existing approaches from LB; typically use ‖θ?‖ ∝ 1/T

Notion of local minimax-regret [Simchowitz and Foster. 2021]:

MinimaxRegretθ?(T, ε) := min
π

max
‖θ−θ?‖≤ε

Regretπθ (T )

for a given (arbitrary) reference θ?.
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Optimality (2/3)

Theorem (Abeille, F., Calauzènes (2021))

For the Logistic Bandit with A = Sd: ∀θ?, ∃ε small s.t:

MinimaxRegretθ?(T, ε) ≥ d
√
µ̇(a>? θ?)T .

whenever T ≥ d2κ(θ?).

Discussion. θ? arbitrary reference point, π a given algorithm

I θ the “hardest” nearby instance in {‖θ′ − θ?‖ ≤ ε}.
I the regret of π against θ is:

Regretπθ (T ) ≥ d
√
µ̇(a>? θ?)T

≈ d
√
µ̇(a?(θ)>θ)T

I small ε =⇒ θ and θ? share same problem-dependent constants:

µ̇(a>? θ?) ≈ µ̇(a?(θ)
>θ) .
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Optimality (3/3)

Proof sketch. To find a hard nearby instance θ for θ?:

(1) π must behave similarly on θ? and θ.
(2) the best arm differs: a?(θ) 6= a?(θ?).

I discrepancy measure: for θ′ ∈ H?⊥:

d(θ′, θ?) :=
√
T µ̇(a>? θ?)‖θ′ − θ?‖2

I compromise between (1) and (2):

θ ∈ ΞΞΞ := {θ′ ∈ H?⊥, d(θ′, θ?) = 1} .
=⇒ ‖θ − θ?‖2 = (T µ̇(a>? θ?))

−1/2

I what about regret?

Regretθ
π(T ) ≈
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Extensions



Contextual bandits

Reward is also a function of exogenous context xt ∈ X :

E [rt+1 |at] = µ(φ(at, xt)
>θ?) .

for some φ : A×X 7→ Rd.

Similar regret upper-bounds:

Regret(T ) = Õ


d
√
T

√√√√ 1

T

T∑

t=1

µ̇(φ(a?,t, xt)>θ?)




where a?,t = argmaxa∈A φ(a, xt) best arm at round t.

Same goes for time-varying arm-sets.
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Non-stationary bandits

Piece-wise stationary environment:

E [rt+1 |at] = µ(at
>θt?) where

T∑

t=2

1
(
θt? 6= θt−1

?

)
= ΓT

Change the estimation process to forget the past:

θ̂t = argminθ −
t∑

s=1

γt−s log dP(rt+1|at)/dν(r) + λ‖θ‖2/2 .

Similar conclusion:

Theorem (improves (Russac, F., Cappé and Garivier , 2021))
There exists an algorithm on the piece-wise stationary GLB problem s.t:

DynamicRegret(T ) = Õ
(
T 2/3Γ

1/3
T

√
`?µ + κκκµT

1/3Γ
2/3
T

)
.

where `?µ := 1
T

∑T
t=1 µ̇(a>?,tθ

t
?) is averaged sensitivity at best-arm.
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(
T 2/3Γ

1/3
T

√
`?µ + κκκµT

1/3Γ
2/3
T

)
.

where `?µ := 1
T

∑T
t=1 µ̇(a>?,tθ

t
?) is averaged sensitivity at best-arm.

Variance-Sensitive Confidence Intervals for Parametric Bandits 33 / 35



Non-stationary bandits

Piece-wise stationary environment:

E [rt+1 |at] = µ(at
>θt?) where

T∑

t=2

1
(
θt? 6= θt−1

?

)
= ΓT

Change the estimation process to forget the past:

θ̂t = argminθ −
t∑

s=1

γt−s log dP(rt+1|at)/dν(r) + λ‖θ‖2/2 .

Similar conclusion:

Theorem (improves (Russac, F., Cappé and Garivier , 2021))
There exists an algorithm on the piece-wise stationary GLB problem s.t:

DynamicRegret(T ) = Õ
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Towards computationally efficient algorithms

Computationally hungry algorithms;

total computational cost = Õ
(
|A|T 2)

Two computational bottlenecks; at each round:
I (learning) compute maximum likelihood (up to precision ε = 1/T ).
I (planning) solve |A| likelihood-based convex programs.

Simultaneously computationally and statistically efficient GLB algorithms?
I (learning) confidence sets with Õ(1) sufficient statistic
I (planning) Thompson Sampling alternative.

£ tools from online convex optimization literature ([Jézéquel et al. 2020]).
=⇒ same regret guarantees and computationally efficient algorithm.
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Conclusion

Key Take-Aways.

Generalized Linear Bandits:
I Flexible yet simple model for many real-word situations.

I Neat study of non-linearity in parametric bandits.

Contributions:
I Improved algorithms (much smaller regret).

I Refined analysis tool for local treatment.
I Not harder to solve than Linear Bandit!

Limitations and Perspectives.
I Towards richer reward models?
I Adversarial bandits.
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Thank you!
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What about self-concordance?
Mostly used for the learning process. Actually, concentration is given by:
∥∥∥∥∥
t−1∑

s=1

[
µ(a>s θ̂t)− µ(a>s θ?)

]
as

∥∥∥∥∥
H−1

t (θ?)

=

∥∥∥∥∥
t−1∑

s=1

ηs+1as

∥∥∥∥∥
H−1

t (θ?)

= O
√
d log(t/δ) .

I To be used for bounding regret, need to be tied to
∥∥∥θ̂t − θ?

∥∥∥
H−1

t (θ?)

By the mean-value theorem:

t−1∑

s=1

[
µ(a>s θ̂t)− µ(a>s θ?)

]
as = Gt(θ̂t, θ?)(θ̂t − θ?)

where Gt(θ̂t, θ?) =
∑t
s=1

[∫ 1

v=0
µ̇(a>s θ? + va>s (θ̂t − θ?)dv

]
asa
>
s + λId.

Self-concordance to the rescue:
∫ 1

v=0

µ̇(a>s θ? + va>s (θ̂t − θ?)dv ≥ (1 + 2S)−1µ̇(a>s θ?)

so Gt(θ̂t, θ?) ≥ (1 + 2S)−1Ht(θ?).
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Bonus vs parameter based optimism

For the Linear Bandit:
I Bonus: play at = argmaxa∈A a

>θ̂t +
√
d log(t)‖a‖

V −1
t

.

I Parameter: play at = argmaxa∈Amaxθ∈Ct(δ) a
>θ

are exactly equivalent.

No longer true with non-ellipsoidal confidence sets.

Bonus-based exploration:
I much more complicated bonus function.
I requires additional projection.
I non-tight analysis ⇒ non-tight design.
I typically much less performant for GLBs.

Parameter-based:
I non-tight analysis remains at analysis time
I more adaptive algorithms (e.g second-order term)
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Fast yet optimal algorithms (1/2)

Replace θ̂t by:

θt = argminΘ ‖θ − θt−1‖2W t−1
+ `(a>t θ, rt+1) .

where:
I Θ is a “small” convex set around θ? (forced-exploration)
I and W t =

∑t−1
s=1 µ̇(a>s θs+1)asas.

Yields the confidence set:
{
θ, ‖θ − θt‖W t ≤

√
d log(t/δ)

}
.

I W t mimics Ht(θ) =⇒ reward sensitivity.
I Sufficient statistics can be maintained at Õ(1) cost.

Same regret bounds!

Forced exploration can be dropped through at data-dependent approach.
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Fast yet optimal algorithms (2/2)

Some experimental results:

1000 2000 3000

500

1000

1500

T

Regret(T )

GLOC
OL2M

GLM-UCB
d-OFU-ECOLog (ours)

OFULog-r

d = 2, |A| = 20, κ = 150

1000 2000 3000

500

1,000

1,500

T

Regret(T )

d = 2, |A| = 20, κ = 400

5,000 10,000 15,000 20,000 25,000

5,000

10,000

T

Regret(T )

TS-GLOC
TS-OL2M

TS-GLM-UCB
d-TS-ECOLog (ours)

d = 5, A = B5, κ = 400.
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Application to GLBs

Using optimality of θ̂t for the regularized log-loss Lλt
t :

∀t ≥ 1,
∥∥∥θ? − θ̂t

∥∥∥
Ht(θ?)

≤
∥∥∥∥∥
t−1∑

s=1

ηs+1as

∥∥∥∥∥
H−1

t (θ?)

= O
(√

d log(t/δ)
)

where:

ηs+1 = rs+1 − µ(a>s θ?) and Ht(θ) =

t∑

s=1

µ̇(a>s θ)asa
>
s + λtId

Define Fs = σ (a1, r2, . . . , rs, as); Exponential family distribution:

I E [ηs+1|Fs] =
I Var(ηs+1|Fs) =

New confidence set:

Proposition (F., Abeille, Calauzènes and Fercoq, 2020.)
For δ ∈ (0, 1] let:

Ct(δ) :=

{
‖θ‖ ≤ S,

∥∥∥θ − θ̂t
∥∥∥
Ht(θ)

≤ O
(√

d log(t/δ)
)}

.

Then P (∀t ≥ 1, θ? ∈ Ct(δ)) ≥ 1− δ.
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GLBs: information vs. regret
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Varying reward sensitivity:

I low-sensitivity:
- information is hard to get
- small regret

I high-sensitivity:
- information is easy to get
- large regret

⇒ linearization: worst of both world.
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Minimax rates in general non-stationary settings

Beyond piece-wise stationarity thanks to variation-budget:

BT :=
T∑

t=2

‖θt? − θt−1
? ‖ .

I describe broader non-stationary environments.

Forgetting mechanisms to the rescue?
I minimax-optimal for the MAB setting

I not so well understood in LB! [F. et al, 2021a]
I best know regret bound for GLBs [F. et al. 2021b]:

DynamicRegret(T ) = Õ
(
κκκµB

1/5
T T 4/5

)
.

Room for improvement! → [Wei and Luo, 2021]
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