Instance-Wise Minimax-Optimal Algorithms for Logistic Bandits

Marc Abeille¹, Louis Faury^{1,2}, Clément Calauzènes¹

¹ Criteo Al Lab

² LTCI Telecom Paris

Presentation Outline

- Goal.
 - Study non-linearity in sequential decision making.
 - A simple problem: the Logistic Bandit.
 - Compact non-linear extension to the Linear Bandit.
 - ✓ Very relevant in practical problems with binary feedback.

Presentation Outline

- Goal.
 - Study non-linearity in sequential decision making.
 - A simple problem: the Logistic Bandit.
 - Compact non-linear extension to the Linear Bandit.
 - ✓ Very relevant in practical problems with binary feedback.
- · Logistic Bandit: high-level contributions.
 - ► [Filippi et al. 2010, Faury et al. 2020]: non-linearity is harmful. Actually:

Non-linearity can make the problem easier.

Presentation Outline

- Goal.
 - Study non-linearity in sequential decision making.
 - ▶ A simple problem: the Logistic Bandit.
 - Compact non-linear extension to the Linear Bandit.
 - ✓ Very relevant in practical problems with binary feedback.
- Logistic Bandit: high-level contributions.
 - ► [Filippi et al. 2010, Faury et al. 2020]: non-linearity is harmful. Actually:

Non-linearity can make the problem easier.

- Identify two distinct regimes:
 - Short-term ↔ early exploration phase: neutral (most often).
 - \longrightarrow Long-term \leftrightarrow exploration-exploitation phase: beneficial.

The Learning Problem

Repeated game with structured binary feedback.

The Learning Problem

Repeated game with structured binary feedback.

• Regret. The agent tries to minimize its cumulative pseudo-regret:

$$\mathsf{Regret}_{\theta_{\star}}(T) := T \max_{\mathbf{x} \in \mathcal{X}} \mu(\mathbf{x}^{\top} \boldsymbol{\theta_{\star}}) - \sum_{t=1}^{T} \mu(\mathbf{x_{t}}^{\top} \boldsymbol{\theta_{\star}}) \;.$$

The Learning Problem (ctn'd)

• Reward model. Minimalist non-linear extension from the linear bandit.

- Exploration-exploitation. Same recipe:
 - Learning: maximum likelihood.
 - ▶ Planning: Optimism through confidence sets.
- Additional challenge. Non-linearity: information vs. regret.

- Level of non-linearity = conditioning.
 - ► How flat are the tails.

• Important quantities. The level of non-linearity is problem-dependent.

- Level of non-linearity = conditioning.
 - ► How flat are the tails.

- Important quantities. The level of non-linearity is problem-dependent.
 - ▶ Historically characterized by a constant κ_{χ} :

$$\kappa_{\varkappa} := \frac{1}{\min_{\mathbf{x} \in \mathcal{X}} \dot{\mu}(\mathbf{x}^{\top} \mathbf{\theta}_{\star})}$$
.

- Level of non-linearity = conditioning.
 - How flat are the tails.

- Important quantities. The level of non-linearity is problem-dependent.
 - ▶ Historically characterized by a constant κ_{χ} :

$$\kappa_{\mathcal{X}} := \frac{1}{\min_{\mathbf{x} \in \mathcal{X}} \dot{\mu}(\mathbf{x}^{\top} \mathbf{\theta}_{\star})}$$
.

- Level of non-linearity = conditioning.
 - ► How flat are the tails.

- Important quantities. The level of non-linearity is problem-dependent.
- ▶ Historically characterized by a constant κ_{χ} :

- Level of non-linearity = conditioning.
 - ► How flat are the tails.

- Important quantities. The level of non-linearity is problem-dependent.
 - ▶ Historically characterized by a constant κ_{x} :

$$\kappa_{\mathcal{X}} := \frac{1}{\min_{\mathbf{x} \in \mathcal{X}} \dot{\mu}(\mathbf{x}^{\top} \boldsymbol{\theta}_{\star})}$$
 the more non-linear the bigger

▶ Inverse slope at the optimum; letting $x_* = \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \mathbf{x}^\top \boldsymbol{\theta}_*$:

$$oldsymbol{\kappa_{\star}} := rac{1}{\dot{\mu}(oldsymbol{x}_{\star}^{ op}oldsymbol{ heta_{\star}})} \; .$$

- Level of non-linearity = conditioning.
 - ► How flat are the tails.

- Important quantities. The level of non-linearity is problem-dependent.
 - \blacktriangleright Historically characterized by a constant κ_{\varkappa} :

$$\kappa_{\mathcal{X}} := \frac{1}{\min_{\mathbf{x} \in \mathcal{X}} \dot{\mu}(\mathbf{x}^{ op} \boldsymbol{\theta}_{\star})}.$$
 (the more non-linear the bigger

▶ Inverse slope at the optimum; letting $x_* = \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \mathbf{x}^\top \boldsymbol{\theta}_*$:

$$oldsymbol{\kappa_{\star}} := rac{1}{\dot{\mu}(oldsymbol{x}_{\star}^{ op}oldsymbol{ heta_{\star}})} \; .$$

- Level of non-linearity = conditioning.
 - ► How flat are the tails.

- Important quantities. The level of non-linearity is problem-dependent.
- ► Historically characterized by a constant κ_x:

$$\kappa_{\mathcal{X}} := \frac{1}{\min_{\mathbf{x} \in \mathcal{X}} \dot{\mu}(\mathbf{x}^{ op} \boldsymbol{\theta}_{\star})}.$$
 the more non-linear the bigger

▶ Inverse slope at the optimum; letting $x_* = \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \mathbf{x}^\top \mathbf{\theta}_*$:

$$oldsymbol{\kappa_{\star}} := rac{1}{\dot{\mu}(oldsymbol{x}_{\star}^{ op}oldsymbol{ heta_{\star}})} \; .$$

- Level of non-linearity = conditioning.
 - ► How flat are the tails.

- Important quantities. The level of non-linearity is problem-dependent.
 - ► Historically characterized by a constant κ_×:

$$\kappa_{\mathcal{X}} := \frac{1}{\min_{\mathbf{x} \in \mathcal{X}} \dot{\mu}(\mathbf{x}^{\top} \boldsymbol{\theta}_{\mathbf{x}})} \cdot \frac{\text{the more non-linear}}{\min_{\mathbf{x} \in \mathcal{X}} \dot{\mu}(\mathbf{x}^{\top} \boldsymbol{\theta}_{\mathbf{x}})}$$

▶ Inverse slope at the optimum; letting $x_* = \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \mathbf{x}^\top \boldsymbol{\theta}_*$:

$$\kappa_{\star} := \frac{1}{\dot{\mu}(\mathbf{x}_{\star}^{\top} \boldsymbol{\theta}_{\star})} \cdot \dots \rightarrow (\in [4, \kappa_{\mathcal{X}}])$$

Non-linearity vs. regret: previous work

Approach	Regret
[Filippi et al. 2010] Linearization (global)	$\tilde{\mathcal{O}}\left(\mathbf{\kappa}_{\mathcal{X}}d\sqrt{T}\right)$
[Faury et al. 2020] Self-concordance (local)	$\tilde{\mathcal{O}}\left(d\sqrt{T}+\kappa_{\mathcal{X}}\right)$
This work Refined local approach	$\tilde{\mathcal{O}}\left(d\sqrt{T/\kappa_{\star}}\left(+\kappa_{\mathcal{X}}\right)\right)$

Non-linearity vs. regret: previous work

Approach	Regret
[Filippi et al. 2010] Linearization (global)	$\tilde{\mathcal{O}}\left(\mathbf{\kappa}_{\mathcal{X}}d\sqrt{T}\right)$
[Faury et al. 2020] Self-concordance (local)	$\tilde{\mathcal{O}}\left(d\sqrt{T}+\boldsymbol{\kappa}_{\mathcal{X}}\right)$
This work Refined local approach	$\tilde{\mathcal{O}}\left(d\sqrt{T/\kappa_{\star}}\left(+\kappa_{\mathcal{X}}\right)\right)$

• Exponential improvement. If $\mathcal{X}=\{\|x\|\leq 1\}$ then $\kappa_{\mathcal{X}}=\kappa_{\star}\geq e^{\|\theta_{\star}\|}$ then regret:

$$\left[ilde{\mathcal{O}}(e^{\| heta_{\star}\|}d\sqrt{T}) \longrightarrow ilde{\mathcal{O}}(d\sqrt{T}+e^{\| heta_{\star}\|}) \longrightarrow ilde{\mathcal{O}}(e^{-\| heta_{\star}\|/2}d\sqrt{T})
ight]$$

• Effects of non-linearity: transitory and permanent regime.

$$\mathsf{Regret}_{\theta_{\star}}(T) = \underbrace{R^{\mathsf{perm}}(T) + R^{\mathsf{trans}}(T)}_{\tilde{\mathcal{O}}(1)}$$

• Effects of non-linearity: transitory and permanent regime.

$$Regret_{\theta_*}(T) = \underbrace{R^{perm}(T) + R^{trans}(T)}_{\tilde{\mathcal{O}}(\sqrt{T})}$$

- **Permanent regime.** For $t \gg 1$, only the local slope around x_{\star} matters.
 - ► Conceptually:
 - Sub-linear regret \rightsquigarrow play mostly $x_t \approx x_{\star}$ for large t.
 - Linear bandit with slope $\dot{\mu}(x_{\star}^{\top}\theta_{\star})=\frac{1}{\kappa_{\star}}$ (potentially $\ll 1$).

• Effects of non-linearity: transitory and permanent regime.

$$\mathsf{Regret}_{\theta_*}(T) = \underbrace{R^{\mathsf{perm}}(T) + R^{\mathsf{trans}}(T)}_{\tilde{\mathcal{O}}(\sqrt{T})} + \underbrace{R^{\mathsf{trans}}(T)}_{\tilde{\mathcal{O}}(1)}$$

- **Permanent regime.** For $t \gg 1$, only the local slope around x_{\star} matters.
 - Conceptually:
 - Sub-linear regret \rightsquigarrow play mostly $x_t \approx x_{\star}$ for large t.
 - Linear bandit with slope $\dot{\mu}(x_{\star}^{\top}\theta_{\star}) = \frac{1}{\kappa_{\star}}$ (potentially $\ll 1$).
 - ▶ The smaller this local slope, the easier the problem:

$$R^{\mathsf{perm}}(T) = \tilde{\mathcal{O}}\left(d\sqrt{T/\kappa_{\star}}\right)$$
 .

- Formal proof: self-concordance.

• Effects of non-linearity: transitory and permanent regime.

$$\mathsf{Regret}_{\theta_{\star}}(T) = \underbrace{R^{\mathsf{perm}}(T) + R^{\mathsf{trans}}(T)}_{\bar{\mathcal{O}}(1)}$$

- **Permanent regime.** For $t \gg 1$, only the local slope around x_{\star} matters.
 - Conceptually:
 - Sub-linear regret \rightsquigarrow play mostly $x_t \approx x_*$ for large t.
 - Linear bandit with slope $\dot{\mu}(x_{\star}^{\top}\theta_{\star}) = \frac{1}{\kappa_{\star}}$ (potentially $\ll 1$).
 - ▶ The smaller this local slope, the easier the problem:

$$R^{
m perm}(T) = \tilde{\mathcal{O}}\left(d\sqrt{T/\kappa_\star}
ight).$$
 ormal proof: self-concordance. $pprox \exp(\| heta_\star\|)!$

- Formal proof: self-concordance.
- Question: how long to reach it?

- Transitory Regret. Also linked to the problem's geometry...
 - ▶ Proportion of detrimental arms: little information and large sub-optimality.

► Transitory regret = how long are we stuck playing detrimental arms?

$$R^{\mathsf{trans}}(T) \propto \sum_{t=1}^{T} \mathbb{1}(x_t \in \mathcal{X}_-)$$

- Transitory Regret. Also linked to the problem's geometry...
 - ▶ Proportion of detrimental arms: little information and large sub-optimality.

$$R^{\mathsf{trans}}(T) = \tilde{\mathcal{O}}(\kappa_{x})$$

► Transitory regret = how long are we stuck playing detrimental arms?

$$R^{\mathsf{trans}}(T) \propto \sum_{t=1}^T \mathbb{1}(x_t \in \mathcal{X}_-)$$

- Transitory Regret. Also linked to the problem's geometry...
 - ▶ Proportion of detrimental arms: little information and large sub-optimality.

► Transitory regret = how long are we stuck playing detrimental arms?

$$R^{\mathsf{trans}}(\mathcal{T}) \propto \sum_{t=1}^{\mathcal{T}} \mathbb{1}(x_t \in \mathcal{X}_{-})$$

Wrapping up.

Theorem (Regret upper-bound)

With high probability:

$$\mathsf{Regret}_{\theta_{\bigstar}}(T) = \tilde{\mathcal{O}}\left(d\sqrt{T/\kappa_{\star}} + (\kappa_{\varkappa})\right)$$

• Refined problem-dependent bounds:

Wrapping up.

Theorem (Regret upper-bound)

With high probability:

$$\mathsf{Regret}_{\theta_{\bigstar}}(T) = \tilde{\mathcal{O}}\left(d\sqrt{T/\kappa_{\star}} + (\kappa_{\varkappa})\right)$$

- Refined problem-dependent bounds:
 - Worst configuration.

$$\mathsf{Regret}_{\theta_*}(T) = \tilde{\mathcal{O}}(d\sqrt{T} + \kappa_{\mathcal{X}})$$

Wrapping up.

Theorem (Regret upper-bound)

With high probability:

$$\mathsf{Regret}_{\theta_{\bigstar}}(T) = \tilde{\mathcal{O}}\left(d\sqrt{T/\kappa_{\star}} + (\kappa_{\varkappa})\right)$$

- Refined problem-dependent bounds:
 - Worst configuration.

$$\mathsf{Regret}_{\theta_+}(T) = \tilde{\mathcal{O}}(d\sqrt{T} + \kappa_{\chi})$$

Best configuration.

$$\mathsf{Regret}_{\theta_*}(T) = \tilde{\mathcal{O}}(d\sqrt{T/\kappa_{\varkappa}})$$

 \rightsquigarrow Is this optimal?

Problem-dependent lower-bound

- Challenge. Study optimality w.r.t problem-dependent constants κ_{χ} .
 - ▶ Lower-bound for a *continuum* of problems, each with different κ_{χ} .
 - ► Traditional lower-bound technique fails.

Problem-dependent lower-bound

- Challenge. Study optimality w.r.t problem-dependent constants κ_{χ} .
 - ▶ Lower-bound for a *continuum* of problems, each with different κ_{χ} .
 - ► Traditional lower-bound technique fails.

Theorem (A local lower-bound)

Let $\mathcal{X}=\{\|x\|=1\}$, fix $\theta_\star\in\mathbb{R}^d$ and denote $\kappa=\kappa_\star(\theta_\star)$. For any policy

$$\left|\max_{\|\theta'-\theta_\star\|\leq\varepsilon}\mathsf{Regret}_{\theta'}(T)=\Omega\left(d\sqrt{T/\kappa}\right)\right|\quad\text{if }T\geq\kappa$$

where ε is such that $\forall \theta' \in \{\|\theta' - \theta\| \le \epsilon \text{ we have } \kappa_{\star}(\theta') = \Theta(\kappa).$

Problem-dependent lower-bound

- Challenge. Study optimality w.r.t problem-dependent constants κ_{χ} .
 - ▶ Lower-bound for a *continuum* of problems, each with different κ_{χ} .
 - ► Traditional lower-bound technique fails.

Theorem (A local lower-bound)

Let $\mathcal{X}=\{\|x\|=1\}$, fix $\theta_{\star}\in\mathbb{R}^d$ and denote $\kappa=\kappa_{\star}(\theta_{\star})$. For any policy

$$\left|\max_{\|\theta'-\theta_\star\|\leq\varepsilon}\mathsf{Regret}_{\theta'}(T)=\Omega\left(d\sqrt{T/\kappa}\right)\right|\quad\text{if }T\geq\kappa$$

where ε is such that $\forall \theta' \in \{\|\theta' - \theta\| \le \epsilon \text{ we have } \kappa_{\star}(\theta') = \Theta(\kappa).$

- Interpretation. For any problem:
 - ► Consider the hardest alternative in nearby instances.
 - ▶ That share the same problem-dependent constant κ_{\star} .
- Conclusion. The long-term regret is tight.

Algorithm

- Algorithm. OFULog:
 - ▶ Relies on the confidence set $C_t(\delta)$ of [Faury et al. 2020].
 - ▶ Parameter-based optimism (vs. bonus-based)

$$\mathbf{x_t} = \max_{\mathbf{x} \in \mathcal{X}} \max_{\theta \in C_t(\delta)} \mathbf{x}^\top \theta$$

$$(\max_{\mathbf{x}\in\mathcal{X}}\mu(\mathbf{x}^{\top}\hat{\theta}_t)+\varepsilon_t(\mathbf{x}))$$

- More adaptive to the problem effective's hardness.
- Tractable algorithm (no non-convex optimization routines).
- In practice. Large improvement on the regret.

¹We also introduce a convex relaxation which leads to a fully tractable algorithm

Bibliography

- Sarah Filippi, Olivier Cappé, Aurélien Garivier, Csaba Szepesvári. Parametric Bandits: The Generalized Linear Case, 2010.
- Francis Bach. Self-Concordant Analysis for Logistic Regression, 2010.
- Shi Dong, Tengyu Ma, Benjamin Van Roy. On the Performance of Thompson Sampling on Logistic Bandits, 2019.
- Louis Faury, Marc Abeille, Clément Calauzènes, Olivier Fercoq. Improved Optimistic Algorithms for Logistic Bandits, 2020.

See you at the Q&A!