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Presentation Outline

e Goal.
» Study non-linearity in sequential decision making.
» A simple problem: the Logistic Bandit.
M~  Compact non-linear extension to the Linear Bandit.
A~ Very relevant in practical problems with binary feedback.

Instance-Wise Minimax-Optimal Algorithms for Logisti



Presentation Outline

e Goal.
» Study non-linearity in sequential decision making.
» A simple problem: the Logistic Bandit.
M~  Compact non-linear extension to the Linear Bandit.
A~ Very relevant in practical problems with binary feedback.

o Logistic Bandit: high-level contributions.
> [Filippi et al. 2010, Faury et al. 2020]: non-linearity is harmful. Actually:

Non-linearity can make the problem easier.
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Presentation Outline

e Goal.
» Study non-linearity in sequential decision making.
» A simple problem: the Logistic Bandit.
M~  Compact non-linear extension to the Linear Bandit.
A~ Very relevant in practical problems with binary feedback.

o Logistic Bandit: high-level contributions.
> [Filippi et al. 2010, Faury et al. 2020]: non-linearity is harmful. Actually:

Non-linearity can make the problem easier.

» Identify two distinct regimes:
> Short-term <> early exploration phase: (most often).

"~ Long-term <> exploration-exploitation phase: beneficial.




The Learning Problem

o Repeated game with structured binary feedback.

reward action
Ewionment~, 2
Xt re ~ Bernoulli (11(x6.))

logistic function
& (unknown)
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The Learning Problem

o Repeated game with structured binary feedback.

reward action
Ewionment~, 2
Xt re ~ Bernoulli (11(x6.))

logistic function
& (unknown)

o Regret. The agent tries to minimize its cumulative pseudo-regret:

-
. Tpy T
Regret, (T):=T Lnea%(p(x 0.) Z/L(Xf 0.) .

t=1
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The Learning Problem (ctn’d)

e Reward model. Minimalist non-linear extension from the linear bandit.

0.75
0.5

0.25

E[re|xe] =x"0. Elre|xe] = (1 + exp(—x¢'6,)) "

o Exploration-exploitation. Same recipe:
» Learning: maximum likelihood.

» Planning: Optimism through confidence sets.

« Additional challenge. Non-linearity: information vs. regret.
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Quantifying non-linearity

X

o Level of non-linearity =
conditioning.
» How flat are the tails.

o Important quantities. The level of non-linearity is problem-dependent.
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Quantifying non-linearity

X

o Level of non-linearity =
conditioning.
» How flat are the tails.

o Important quantities. The level of non-linearity is problem-dependent.

» Historically characterized by a constant k. :

1

= mineex 1(x70.)
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Quantifying non-linearity

X

o Level of non-linearity =
conditioning.

» How flat are the tails.

slope 1/k+

o Important quantities. The level of non-linearity is problem-dependent.

» Historically characterized by a constant k. :

1

= mineex 1(x70.)
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Quantifying non-linearity

X

o Level of non-linearity =
conditioning.

» How flat are the tails.

slope 1/k+

o Important quantities. The level of non-linearity is problem-dependent.

» Historically characterized by a constant k. : the ore non-linear
—————— >
1 7 the bigger

BT i il T0L)
eeee- (< exp(llo- 1)
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Quantifying non-linearity

X

o Level of non-linearity =
conditioning.

» How flat are the tails.

slope 1/k+

Important quantities. The level of non-linearity is problem-dependent.
» Historically characterized by a constant k. :

the more non-linear
e >
1 28 the bigger
Ky = ———————

" Minxex /l(xTH*)\'

T >{ oc exp([|0« 1)
» Inverse slope at the optimum; letting x, = argmaxxeXxTH*:

1

A 0.)
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Quantifying non-linearity

X
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« Level of non-linearity = 1
conditioning. T
» How flat are the tails. , §
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P >
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Quantifying non-linearity

X
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e{x € X}9
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Quantifying non-linearity

X
o, M
o Level of non-linearity =
conditioning.
» How flat are the tails. dope 1/

e{x € X}9
Important quantities. The level of non-linearity is problem-dependent.

» Historically characterized by a constant k. : the ore non-linear

1 ST the bigger

K‘Y == -
Minxex u(xTH*)\
—————— >( o< exp([|041])

» Inverse slope at the optimum; letting x, = argmaxxeXxTH*:

1

,U,(X;ro*) ——————————— > €[4, kx]

!
I
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Non-linearity vs. regret: previous work

Approach Regret
[Filippi et al. 2010] ~
Linearization (global) o ('ﬁxdﬁ>
[Faury et al. 2020] ~

Self-concordance (local) (@) (d\/?+ HX)

This work = f——
Refined local approach © (d T/ (+KX)>
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Non-linearity vs. regret: previous work

Approach Regret
[Filippi et al. 2010] ~
Linearization (global) o ('ﬁxdﬁ>
[Faury et al. 2020] ~

Self-concordance (local) (@) (d\/?+ HX)

This work = f——
Refined local approach © (d T/ (+KX)>

« Exponential improvement. If X = {||x|| < 1} then kx = . > el then
regret:

@(el\ﬂ* Il dﬁ) N @(dﬁ+ eHB* H) N @(e—HO* H/2dﬁ)
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Regret Upper-Bound

o Effects of non-linearity: transitory and permanent regime.

Regrety, (T) = R**™(T) + R™"™(T)
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Regret Upper-Bound

o Effects of non-linearity: transitory and permanent regime.

Regrety, (T) = R**™(T) + R™"™(T)

o Permanent regime. For t > 1, only the local slope around x, matters.
» Conceptually:
- Sub-linear regret "M play mostly x; & x, for large t.
- Linear bandit with slope fi(x,] 0,.) = - (potentially < 1).
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Regret Upper-Bound

o Effects of non-linearity: transitory and permanent regime.

Regret, (T) = RP"™(T)+ R™"™(T)

o Permanent regime. For t > 1, only the local slope around x, matters.
» Conceptually:
- Sub-linear regret "M play mostly x; & x, for large t.
- Linear bandit with slope fi(x,] 0,.) = - (potentially < 1).
» The smaller this local slope, the easier the problem:

RP™(T) = O (dy/T/x-)

- Formal proof: self-concordance.
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Regret Upper-Bound

o Effects of non-linearity: transitory and permanent regime.

Regret, (T) = RP"™(T)+ R™"™(T)

o Permanent regime. For t > 1, only the local slope around x, matters.
» Conceptually:

- Sub-linear regret "M play mostly x; & x, for large t.
- Linear bandit with slope fi(x,] 0,.) = - (potentially < 1).
» The smaller this local slope, the easier the problem:

Rem(T) = O (dv/T/n) -

- Formal proof: self-concordance. IR N exp(||0*||)!
» Question: how long to reach it?
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Regret Upper Bounds (ctn’d)

o Transitory Regret. Also linked to the problem's geometry..

» Proportion of detrimental arms: little information and large sub-optimality.

X
plenty of

variance o< 1/K
[T good arms

0, 0,

gap =~ 1/2 X

» Transitory regret = how long are we stuck playing detrimental arms?

.
R™M(T) oc Y M(x € X)
t=1
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Regret Upper Bounds (ctn’d)

o Transitory Regret. Also linked to the problem's geometry..

» Proportion of detrimental arms: little information and large sub-optimality.

plenty of

variance o< 1/K
[T good arms

0,

gap =~ 1/2 X

Rws(T) = O(k.)

» Transitory regret = how long are we stuck playing detrimental arms?

.
R™M(T) oc Y M(x € X)
t=1
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Regret Upper Bounds (ctn’d)

o Transitory Regret. Also linked to the problem's geometry..

» Proportion of detrimental arms: little information and large sub-optimality.

X
. plenty of
variance x 1/ good arms
6, y
gap ~ 1/2 X
Rtrans(T) — @("3/\') Rtrans(T) — @(1)

» Transitory regret = how long are we stuck playing detrimental arms?

.
R™M(T) oc Y M(x € X)
t=1
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Regret Upper Bounds (ctn’d)

o Wrapping up.

Theorem (Regret upper-bound)
With high probability:

Regret, (T) =0 (d\/T/m 1 (K:x))

o Refined problem-dependent bounds:
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Regret Upper Bounds (ctn’d)

o Wrapping up.

Theorem (Regret upper-bound)
With high probability:

Regret, (T) =0 (d\/T/m + (K:x))

o Refined problem-dependent bounds:
» Worst configuration.

Regret, (T) = O(dVT + k=)
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Regret Upper Bounds (ctn’d)

o Wrapping up.

Theorem (Regret upper-bound)
With high probability:

Regret, (T) =0 (d\/T/m + (K:x))

o Refined problem-dependent bounds:
» Worst configuration.

Regret, (T) = O(dVT + k=)
» Best configuration.

Regret, (T) = O(d\/T/kx)

s this optimal?
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Problem-dependent lower-bound

o Challenge. Study optimality w.r.t problem-dependent constants & .
» Lower-bound for a continuum of problems, each with different x..

» Traditional lower-bound technique fails.
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Problem-dependent lower-bound

o Challenge. Study optimality w.r.t problem-dependent constants k.
» Lower-bound for a continuum of problems, each with different x..

» Traditional lower-bound technique fails.

Theorem (A local lower-bound)

Let X = {||x|| = 1}, fix 6. € RY and denote r = k.(0). For any policy

max  Regret,, (T) = (dm)

167 =6 |I<e

ifT >k

where € is such that V0’ € {||0' — 0|| < € we have k.(0') = O(x).
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Problem-dependent lower-bound

o Challenge. Study optimality w.r.t problem-dependent constants k.
» Lower-bound for a continuum of problems, each with different x..
» Traditional lower-bound technique fails.

Theorem (A local lower-bound)
Let X = {||x|| = 1}, fix 6. € RY and denote r = k.(0). For any policy

max  Regret,, (T) = (d\/ T/n) ifT >k

167 =6 |I<e

where € is such that V0’ € {||0' — 0|| < € we have k.(0') = O(x).

o Interpretation. For any problem:
» Consider the hardest alternative in nearby instances.
» That share the same problem-dependent constant «..

e Conclusion. The long-term regret is tight.
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Algorithm

o Algorithm. OFULog:
> Relies on the confidence set C¢(4) of
» Parameter-based optimism ( )

=
Xt = max max x 6
XEX 0€C(5)

- More adaptive to the problem effective's hardness.

- Tractable algorithm (no non-convex optimization routines).

o In practice. Large improvement on the regret.

400 ARegret(T) 500 Regret(T) GLM-UCB
— LogUCB1
300 400 = 400 OFULog
300
200
200
100
100
T
2,000 4,000 6,000 8,000 2,000 4,000 6,000 8,000

1We also introduce a convex relaxation which leads to a fully tractable algorithm
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See you at the Q&A!
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