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Outline

o We are interested in off-line policy evaluation and
improvement in a contextual bandit setting.

o We propose to use tools from Distributionally Robust
Optimization (DRO) for this task, motivated by asymptotic
guarantees.

o We introduce a new algorithm for off-line policy
improvement, based on the DRO framework, that outperforms
the state-of-the-art on classical datasets.
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Contextual Bandits (CB)

The contextual bandits (CB) is an extension to the classical
multi-arm bandit setting.
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In CB, an agent is presented with a context x; (exogenous) and
plays an action a;. The environment then generates a reward r;.

The agent's goal is to maximize its expected reward.
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Contextual Bandit (CB, cntd’)

o Recommender system:

x;=user embedding, a;=recommandation, r=click

o Clinical trials:

x;=patient information, a;=medication, r=remission
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Contextual Bandit (CB, cntd’)

Goal: Maximize the expected reward, under two settings:

Online setting: at every round t, the agents interacts with
the world to minimize its cumulative regret. The challenge is
the trade-off.

Offline setting: the agent only has access to past interactions
and must find a way to improve its performance. The
challenge is off-line policy and

We will consider the offline setting.
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Some notations

Let contexts x € X and action ac€ A
Let the cost c(x, a) := —r(x, a).

The contexts are drawn under v (unknown).

An agent is characterized by its . a function that maps
contexts to a distribution on the actions.

The goal is to find the policy 7 with minimal

R(Tr) = IE><rv1/,y~7r(~|x) [C(Xv)/)]

which is the expected cost suffered when playing the policy .
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Offline Contextual Bandits (OCB)

In OCB, the agent cannot interact with the environment. The only
available data are from a logging policy mo:

Ho = <Xi7 aj, pi = mo(xilai), ci = c(x;, ai))

1<i<n

A standard estimator for R(7) involves

R(7) = Exvammo [c(x, NGl ]

mo(alx)

usually estimated with capping:
a
Zc, min ( al "X'))
pi

sometimes called the IPS estimator.
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Counterfactual Risk Minimization (CRM)

Problem: the estimator R,() can have very large variance for
some 7 and may be (optimizer's curse).

Solution: [Swaminathan et al, 2015] ! suggest looking at an
variance-sensitive upper-bound on the true risk:

R(7) < Ra() + \\/Vary(7)/n  w.h.p

leading to the CRM principle for policy improvement:

argmin_R,(7) + \y/ \Er,,(ﬂ)/n

which gave rise to the POEM algorithm (state-of-the-art).

Can be augmented with techniques
(Self-Normalized estimator, Doubly Robust).

! Counterfactual Risk Minimization: Learning from Logged Bandit Feedback
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Our contribution

We show that Distributionally Robust Optimization (DRO) tools
can be applied to OCB in order to:

provide a unified framework to build a collection of
(asymptotic)

derive existing CRM algorithms

derive CRM algorithms outperforming state-of-the-art

= DRO provides principled tools for the OCB problem. It is a
framework that generalizes existing CRM solutions.
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Distributionally Robust Optimization (DRO)

Denote & := (x, a) with distribution P := v x mp. We write the
empirical risk as follows

Ra(m) = Eq_p, [6x(€ Zﬁ (&)

where £,(&;) = ¢; min(M, 7(aj|x;)/pi) (capped propensity-costs).

In DRO, we treat IS,, with and introduce a

RU(m, ) == sup Eeoq [ln(€)]

QEU:

where U, is an . a «ball» of radius € around P,
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DRO (cnt'd)
We define U, using p-divergences
U = {Q st D(Q||Py) < g}
where for Q < P:

ap(ouP):/w( dp

d
and 1) ¢ is a convex function, 2) ¢(t) > ¢(1) =0, 3) ¢'(1) =0,
4) ¢"(1) >0 ( )-
We will consider robust risk defined through coherent
p-divergences:

Ri(re)= sup  Ecuq|la(€)]
Dy (QI|Pn)<e
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DRO for CRM: guarantees

Guarantee 1 The robust risk R¥ (7, ) provides an
for the true risk.

Lemma 1: Risk upper-bound
For any 6 > 0:

lim P [R(w) < /%;f(w,gn)] <1-§

n—o0

where ¢, = cp”(l)x%717§/(2n).

This result can be derived from Proposition 1 in [Duchi 2016]2.

2Statistics of Robust Optimization: A Generalized Empirical Likelihood
Approach
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DRO for CRM: guarantees (2)

Guarantee 2 The robust risk estimates:

Lemma 2: Asymptotic variance decomposition

Ré(m,e/n) = R’,,(W) + 1/%\7;r,,(7r) + o(\%)

This result can be obtained as a Corollary of Theorem 2 of [Duchi
2016].

= Lemma 1 and Lemma 2 imply that the upper-bounds provide
variance-sensitive performance certificate, making it a reliable tool
for
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DRO for CRM: guarantees (3)

Guarantee 3 With exponentially parametrized policy, minimizing
the robust risk with x2 ambiguity sets is the POEM
algorithm.

Lemma 3: Exact variance decomposition

For € small enough:

I?,)fz(w,e) = Ro(n) + 1/ 6\7;!’,,(71’)

= Existing CRM algorithms are already instances of DRO
estimators!
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DRO for CRM: guarantees (4)

Sketch of proof By strong duality we have

su Eo [l = inf ve +inf s Eo [l —~vD,(Q PA,,
b |F|)An) Q [€=(&)] nfe Q{ Q [£x ()] = 7D (Q] )}
(1)

Using the Envelope Theorem of [Rockafellar18]3 one gets:

sup  Eq [(+(6)] = inf 7e +inf { +1Ep, [¢" ((6() — )/ |
Dy (Ql|Pn)
)

For the x2-divergence, ©(z) = (z — 1)? and ¢*(s) = s2/4 + s for
s > —2. Solving leads to the result.

3Risk and utility in the duality framework of convex analysis
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DRO for CRM: guarantees (5)

Sum-up so far

Guarantees 1 and 2: DRO is a general tool for building
variance-sensitive upper-bounds on the risk

Guarantee 3: POEM is actually DRO with y? divergences.

In what follows
We introduce a CRM algorithm inspired from DRO, and
derived from Kullback-Leibler divergence ambiguity sets.
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New KL-based CRM algorithm

We now consider ambiguity sets:
é,'fl'(ﬂ,{f) = min_ E¢og [l()]
KL(QIIP»)
There is a for the worst-case distribution.

Lemma 4: KL robustified risk
It exists v > 0 such that

. n fﬂ(g)eZW(gi)/’Y
KL —
Rt me) = ) s e G)

=

The line of proof follows the one of Lemma 3, and uses the convex
conjugate of pk(z) = zlog(z) —z+ 1.
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New CRM algorithms

: Minimize the upper-bound given by the
robust risk! This gives rise to the algorithm:

L. 5 . gﬂ(&)e&r(&)/’Y
KL — _—
miniMmize,; Rn (7T7 6) - Z Zj’:l egﬂ'(gj)/w

i=1

(KL-CRM)

where + is treated as a hyper-parameter (cross-validation).

Temperature ~ dictates the level of pessimism:
~ — oo reduces to the IPS estimator

~ — 0 only consider the worst case propensity cost.
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New CRM algorithms

A finer analysis reveals a good approximation ~.

Lemma 5: aKL-CRM

—

Var ()

T = 2¢

The proof relies on a second-order Taylor approximation of the
log-m.g.f of the loss in the dual objective.

This gives rise to which minimizes the KL-CRM
objective and concurrently updates ~,.
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Experimental Results

We evaluate on standard datasets (supervised—bandit) and
compare KL-CRM and aKL-CRM with the basic IPS approach and
the POEM algorithm.

Hyper-parameters are determined through cross-validation.
Experiments are average over 20 different random initialization.

The performance of a policy is reported by its expected instant
regret or by the of its greedy policy.
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Experimental Results (ctn’d)

Expected instant regret:

Scene | Yeast | RCV1-Topics | TMC2009
7o 1529 | 5.542 1.462 3.435
CIPS 1.163 | 4.658 0.930 2.776
POEM | 1.157 | 4.535 0.918 2.101
KL-CRM | 1.146 | 4.604 0.922 2.136
aKL-CRM | 1.128 | 4.553 0.783 2.126
CRF | 0.646 | 2.817 |  0.341 1187 |

Table: Expected Hamming loss on Dy, for the different algorithms,
averaged over 20 independent runs. Bold font indicate that one or several
algorithms are statistically better than the rest, according to a one-tailed
paired difference t-test at significance level of 0.05.

Rq: CRF is a skyline that has access to full supervised feedback.
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Experimental Results (ctn’d)
Greedy instant regret:

| Scene ‘ Yeast ‘ RCV1-Topics ‘ TMC2009 |

CIPS 1.163 | 4.369 0.929 2.774
POEM 1.157 | 4.261 0.918 2.190
KL-CRM 1.146 | 4.316 0.922 2.134
aKL-CRM | 1.128 | 4.271 0.779 2.034

Table: Hamming loss on Dy, for the different greedy policies, averaged
over 20 independent runs. Bold font indicates that one or several
algorithms are statistically better than the rest, according to a one-tailed
paired difference t-test at significance level of 0.05.
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Experimental Results (ctn’d)

Influence of the size of the logged history:

w w w > >
IS > ® o b

expected Hamming loss

w
N

—e— POEM
KL-CRM
—4— aKL-CRM

Iy
o

I
>

A

expected Hamming loss
-
N

Iy
Cug

—e— POEM
KL-CRM
—4— aKL-CRM

N

0

2T

g >3 27 25 26 27 28 0

# replay count A

N

(a) Yeast dataset

2T

22 23 24 25 25 27 28
# replay count A

(b) Scene dataset

Figure: Impact of the replay count A on the expected Hamming loss.
Results are average over 10 independent runs, that is 10 independent
train/test split and bandit dataset creation. KL-CRM and aKL-CRM
outperform POEM in the small data regime.
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Conclusion and future work

DRO is a principled tool for OCB and lead to CRM
algorithms.

Future work:
further experimental evalutions (SNIPS, DR)

solving the primal problem can be easy! we can use
performance certificate given by many ¢ divergences.

can we derive guarantees?
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Thank youl
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