Improved Optimistic Algorithms for Logistic Bandits

Louis Faury^{1,2}, Marc Abeille¹ Clément Calauzènes¹, Olivier Fercoq²

¹ Criteo AI Labs

² LTCI Telecom Paris

Scope

Logistic Bandit.

- sequential decision making model.
- powerful extension to the Linear Bandit.
- binary reward, ubiquitous in applications of contextual bandits.

Repeated game. At each round *t*:

- 1. Environment reveals $\mathcal{X}_t \in \mathbb{R}^d$ arbitrary arm-set (possibly infinite).
- 2. Player plays arm $\mathbf{x_t} \in \mathcal{X}_t$
- 3. Player receives the reward $r(x_t)$.

Learning problem. Minimize cumulative pseudo-regret up to round T:

$$R(T) = \sum_{t=1}^{T} \left[\underbrace{\operatorname{argmax}_{x \in \mathcal{X}_{t}} \mu(\boldsymbol{\theta}_{\star}^{\top} x)}_{\text{max reward in hindsight}} - \mu(\boldsymbol{\theta}_{\star}^{\top} x_{t}) \right]$$

Topic of this talk. We study a problem-dependent constant κ

- \triangleright κ measures the **non-linearity** of the reward signal.
- \triangleright κ can be very large, especially in real-life problems.

Why. Troublesome dependencies of existing algorithms

- exploration bonus $\propto \kappa$
- as a result: Regret $(T) = \tilde{O}(\kappa d\sqrt{T})$.

Raise two major drawbacks

- practical: poor empirical performances.
- gap between linear and non-linear bandits.

Contributions

Novel algorithm. LogUCB2 for which we prove:

$$\mathsf{Regret}(\mathsf{T}) = ilde{\mathcal{O}}(d\sqrt{\mathsf{T}} + \kappa)$$

- reduced dependency in κ .
- solves an open question since [Filippi et al. 2010].

Novel analysis with improved treatment of the reward's non-linearity.

How. Old and new:

- self-concordance property of the logistic loss.
- new tail-inequality for self-normalized vectorial martingales.
- information-preserving projections.

Optimistic algorithms

Exploration/exploitation trade-off via optimism (OFU).

- ▶ for generalized linear bandits [Filippi et al. 2010, Li et al. 2017]
- includes the logistic bandit

$$\mathsf{play} \ x_t = \mathsf{argmax}_{\mathsf{x} \in \mathcal{X}_t} \ \underbrace{\mu(\hat{\theta}_t^\top x)}_{\mathsf{exploitation}} + \underbrace{\mathsf{bonus}(x)}_{\mathsf{exploration}}$$

Exploration bonus: mitigate some defects in the prediction

designed by upper-bounding the prediction error:

$$\mathsf{bonus}(x) \geq \mu(\theta_{\star}^{\top}x) - \mu(\hat{\theta}_{t}^{\top}x)$$

- The tighter the bonus, the better the algorithm
- ► For GLM-UCB [Filippi et al. 2010]:

bonus(x) $\propto \kappa$

A key quantity (1/2)

Non-linear reward signal: κ as a distance from the Linear Bandit setting

$$\kappa = \max_{\|x\|_2 \le 1, \|\theta\|_2 \le S} 1/\dot{\mu}(\theta^\top x) \text{ when } \|\theta_\star\| \le S.$$

A key quantity (2/2)

κ characterizes the **hardness** of the **learning** problem.

► x₁ and x₂: almost always same reward ← small conditional variance.

Typically:

$$\|\hat{ heta}_t - heta_\star\|_2^2 \propto \kappa$$

where $\hat{\theta}_t$ is the maximum likelihood estimator

 κ large \Leftrightarrow estimating θ_{\star} is hard

GLM-UCB-like algorithms

• Bonus design: linearization and use of $V_t = \sum_{s=1}^{t-1} x_s x_s^\top + \lambda I_d$.

$$\underbrace{\mu(x^{T}\hat{\theta}_{t}) - \mu(x^{T}\theta_{\star})}_{\Rightarrow \text{ bonus}(x) = L\kappa} \|x\|_{\mathbf{V}_{t}^{-1}} \|\hat{\theta}_{t} - \theta_{\star}\|_{\mathbf{V}_{t}}$$

Challenges

 \bullet Switch from a global (i.e $V_t)$ to a local analysis through:

$$\mathbf{H}_{\mathbf{t}}(\theta) = \sum_{s=1}^{t-1} \dot{\mu}(\mathbf{x}_{s}^{\top}\theta) \mathbf{x}_{s} \mathbf{x}_{s}^{\top} + \lambda \mathbf{I}_{\mathbf{d}}$$
(1)

• Design a **local** bonus thanks to:

$$\mu(\mathbf{x}^{\mathsf{T}}\hat{\theta}_t) - \mu(\mathbf{x}^{\mathsf{T}}\theta_\star) \lessapprox \dot{\mu}(\mathbf{x}^{\mathsf{T}}\hat{\theta}_t) \|\mathbf{x}\|_{\mathsf{H}_{\mathsf{t}}^{-1}(\hat{\theta}_t)} \|\hat{\theta}_t - \theta_\star\|_{\mathsf{H}_{\mathsf{t}}(\hat{\theta}_t)}$$

so easy prediction can cancel out hard learning.

- Challenges:
 - ► Control $\|\hat{\theta}_t \theta_\star\|_{H_t(\hat{\theta}_t)}$ to design a bonus (challenge 1)
 - Prove that the bonus vanishes quickly (sub-linear regret) (challenge 2)

both independently of κ .

Challenge 1: a novel tail-inequality

1. Let $\{x_t\}_{t=1}^{\infty}$ a \mathcal{F}_t -adapted stochastic process in $\mathcal{B}_2(d)$

2. Let $\{\varepsilon_t\}_{t=2}^{\infty}$ a \mathcal{F}_t -adapted martingale difference sequence s.t:

$$|\varepsilon_t| \leq 1, \qquad \sigma_t^2 := \mathbb{E}[\varepsilon_{t+1}|\mathcal{F}_t] < +\infty$$

Let $\lambda > 0$ and for any $t \ge 1$ define:

$$S_t := \sum_{s=1}^{t-1} \varepsilon_{s+1} x_s \qquad \mathbf{H}_t := \sum_{s=1}^{t-1} \sigma_s^2 x_s x_s^T + \lambda \mathbf{I}_d$$

Theorem (informal)

With probability at least $1 - \delta$:

$$orall t \geq 1, \|S_t\|_{\mathsf{H}_t^{-1}} = \mathcal{O}\left(\sqrt{d\log(t/\delta)}
ight)$$

Bernstein-equivalent of the tail-inequality for the Linear Bandit [Theorem

1, Abbasi-Yadkori. 2011]

Challenge 1: improved deviation-bounds

Application to the Logistic Bandit. In the logistic model:

Proposition (Deviation-bound, informal)

$$orall t \geq 1, \quad \left\| \hat{ heta}_t - heta_\star
ight\|_{\mathsf{H}_t(heta_\star)} \leq (1+2S)\sqrt{d\log(t)} \qquad w.h.p$$

Improvement over past results. Using the **linearization** strategy and the Linear Bandit tail-inequality:

$$orall t \geq 1, \quad \left\| \hat{ heta}_t - heta_\star
ight\|_{\mathbf{V}_{\mathbf{t}}} \leq \kappa \sqrt{d \log(t)} \qquad ext{w.h.p}$$

 $\Rightarrow \text{ from global to local} \\\Rightarrow \text{ independent of } \kappa$

► challenge 1: ✔

Challenge 2

• With these results we can design the **local** bonus:

$$\operatorname{bonus}(x,\hat{\theta}_t) = \dot{\mu}(\hat{\theta}_t^{\top} x) \|x\|_{\mathsf{H}_t^{-1}(\hat{\theta}_t)} \beta_t(\delta) + \underbrace{C\kappa \|x\|_{\mathsf{V}_t^{-1}}^2}_{\operatorname{second order term}}$$

with
$$\beta_t \sim \sqrt{d \log(t)}$$
 and play:
$$\boxed{x_t = \operatorname{argmax}_{x \in \mathcal{X}_t} \left[\mu(x^\top \hat{\theta}_t) + \operatorname{bonus}(x, \hat{\theta}_t) \right]}$$

• To finish the analysis, we need to bound:

$$\sum_{t=1}^{T} \operatorname{bonus}(x_t, \hat{\theta}_t) \leq \beta_T(\delta) \underbrace{\sum_{t=1}^{T} \dot{\mu}(\hat{\theta}_t^\top x_t) \|x\|_{\mathsf{H}_t^{-1}(\hat{\theta}_t)}}_{\operatorname{leading regret term}} + C\kappa \underbrace{\sum_{t=1}^{T} \|x_t\|_{\mathsf{V}_t^{-1}}^2}_{\operatorname{log}(T)}$$

Challenge 2: admissible log-odds

Decreasing bonus \Leftrightarrow increasing information/knowledge.

Why it is not obvious.

- How is information measured? At round t:
 - In MAB, for arm x:

$$\#\{x_t = x, s \le t\}$$
 increasing

In Linear Bandit:

 $||^{A}||V_{+}||V_{+}||$

In Logistic Bandits, for arm x:

What it means.

- Updating $\hat{\theta}_t$ can degrade past information
- $\blacktriangleright \Rightarrow$ no reason the bonus should vanish!

Challenge 2: admissible log-odds (ctn'd)

Solution (informal).

- **Project** $\hat{\theta}_t$ to a set of information-preserving estimators.
- Set of admissible log-odds:

1

$$\mathcal{W}_t := \left\{ heta, \, \dot{\mu}(x_s^ op heta) \geq \dot{\mu}(x_s^ op \hat{ heta}_s) ext{ for all } s \geq t-1
ight\}$$

Notice:

$$\begin{split} \hat{\theta}_t &\in \mathcal{W}_t \Rightarrow \dot{\mu}(x_s^{\top} \hat{\theta}_t) \geq \dot{\mu}(x_s^{\top} \hat{\theta}_s) \\ &\Rightarrow \mathsf{H}_{\mathsf{t}}(\hat{\theta}_t) \succeq \sum_{s=1}^{t-1} \dot{\mu}(x_s^{\top} \hat{\theta}_s) x_s x_s^{\top} + \lambda \mathsf{I}_{\mathsf{d}} := \mathsf{L}_{\mathsf{t}} \\ &\Rightarrow \|x\|_{\mathsf{H}_{\mathsf{t}}(\hat{\theta}_t)} \geq \|x\|_{\mathsf{L}_{\mathsf{t}}} \quad \leftarrow \mathsf{increasing!} \end{split}$$

We can prove:

$$\widehat{\hat{\theta}_t} \in \mathcal{W}_t \Rightarrow \sum_{t=1}^T \dot{\mu}(\hat{\theta}_t^\top x_t) \|x\|_{\mathbf{H}_t^{-1}(\hat{\theta}_t)} \le d\sqrt{T} + C\kappa \log T$$

challenge 2: 🗸

Improved Optimistic Algorithms for Logistic Bandits

LogUCB-2 (wrap-up)

Algorithm 1 Log-UCB2

Input: regularization parameter λ Initialize the set of admissible log-odds $\mathcal{W}_0 = \Theta$ for $t \ge 1$ do $\tilde{\theta}_t = \operatorname{argmin}_{\theta \in \mathcal{W}_t \cap \Theta} \left\| g_t(\theta) - g_t(\hat{\theta}_t) \right\|_{H_t^{-1}(\theta)} \leftarrow \operatorname{project} \hat{\theta}_t \text{ on } \mathcal{W}_t$ Observe the contexts-action feature set \mathcal{X}_t . Play $x_t = \operatorname{argmax}_{x \in \mathcal{X}_t} \mu(x^\top \tilde{\theta}_t) + b_t(x)$. Observe rewards r_{t+1} . Compute log-odds $\ell_t = \sup_{\theta' \in \mathcal{C}_t(\delta)} x_t^\top \theta'$. \leftarrow minimum information Add the new constraint to the feasible set:

$$\mathcal{W}_{t+1} = \mathcal{W}_t \cap \{\theta : -\ell_t \leq \theta^\top x_t \leq \ell_t\}.$$

end for

LogUCB-2 (wrap-up)

Algorithm	Regret Upper Bound	Setting
GLM-UCB	$O(\mathbf{r} \cdot d \cdot T^{1/2} \cdot \log(T)^{3/2})$	GLM
[Filippi et al. 2010]		GEIM
Thompson Sampling	$(2 (r d^{3/2}, T^{1/2} \log(T)))$	GLM
[Abeille et Lazaric. 2017]		GLIM
SupCB-GLM ¹	$(2(\mathbf{r})(d\log K)^{1/2}, T^{1/2}\log(T))$	CLM K actions
[Li et al. 2017]	$\mathcal{O}(\mathbf{k} \cdot (\mathbf{u} \log \mathbf{k}) + \mathbf{v} \log(\mathbf{r}))$	GLIVI, A actions
LogUCB1	$O(t_{1/2}, d, T^{1/2} \log(T))$	Logistic model
(this work)	$\mathcal{O}\left(\mathbf{k}^{\prime}\right)$	
LogUCB2	$O(d, T^{1/2}\log(T) + r, d^2 \log(T)^2)$	Logistic model
(this work)	$\mathcal{O}\left(u + i \neq \log(i) + \mathbf{k} \cdot u + \log(i)\right)$	

Comparison of frequentist regret guarantees for the logistic bandit with respect to κ , d and T.

Take-home messages

Critical dependence on κ .

► Linearization strategies ⇒ **prohibitive** practical performance

Tackled through a local analysis.

- new tail-inequality for self-normalized martingales
- self-concordance of log-loss

and information-preserving estimators.

set of admissible log-odds.

Closing the gap with linear bandits

$$\blacktriangleright R_T = \tilde{\mathcal{O}}\left(d\sqrt{T} + \kappa\right)$$

Thank you!

Improved Optimistic Algorithms for Logistic Bandits