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Scope

Logistic Bandit.
I sequential decision making model.
I powerful extension to the Linear Bandit.
I binary reward, ubiquitous in applications of contextual bandits.

rrr(xxx) ∼∼∼ Bernoulli
(
µµµ(xxx>θ?θ?θ?)

)
reward
∈ {0, 1}∈ {0, 1}∈ {0, 1}

action
∈ Xt∈ Xt∈ Xt

logistic
function

∈ Rd∈ Rd∈ Rd

(unknown)

Repeated game. At each round t:
1. Environment reveals Xt ∈ Rd arbitrary arm-set (possibly infinite).
2. Player plays arm xtxtxt ∈ Xt

3. Player receives the reward rrr(xtxtxt).
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Learning problem. Minimize cumulative pseudo-regret up to round T :

R(T ) =
T∑
t=1

[
argmaxx∈Xt

µµµ(θ?θ?θ?
>x)︸ ︷︷ ︸

max reward in hindsight

−µµµ(θ?θ?θ?
>xtxtxt)

]

Topic of this talk. We study a problem-dependent constant κκκ
I κκκ measures the non-linearity of the reward signal.
I κκκ can be very large, especially in real-life problems.

Why. Troublesome dependencies of existing algorithms
I exploration bonus ∝ κκκ
I as a result: Regret(T ) = Õ(κκκd

√
T ).

Why. Raise two major drawbacks
I practical: poor empirical performances.
I gap between linear and non-linear bandits.
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Contributions

Novel algorithm. LogUCB2 for which we prove:

Regret(T ) = Õ(d
√
T + κκκ)

I reduced dependency in κκκ.
I solves an open question since [Filippi et al. 2010].

Novel analysis with improved treatment of the reward’s non-linearity.

How. Old and new:
I self-concordance property of the logistic loss.
I new tail-inequality for self-normalized vectorial martingales.
I information-preserving projections.
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Optimistic algorithms

Exploration/exploitation trade-off via optimism (OFU).
I for generalized linear bandits [Filippi et al. 2010, Li et al. 2017]
I includes the logistic bandit

play xt = argmaxx∈Xt
µ(θ̂>t x)︸ ︷︷ ︸

exploitation

+bonus(x)︸ ︷︷ ︸
exploration

Exploration bonus: mitigate some defects in the prediction
I designed by upper-bounding the prediction error:

bonus(x) ≥ µ(θ>? x)− µ(θ̂>t x)

I The tighter the bonus, the better the algorithm
I For GLM-UCB [Filippi et al. 2010]:

bonus(x) ∝ κκκ
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A key quantity (1/2)

Non-linear reward signal: κκκ as a distance from the Linear Bandit setting

κκκ = max
‖x‖2≤1,‖θ‖2≤S

1/µ̇(θ>x) when ‖θ?‖ ≤ S‖θ?‖ ≤ S‖θ?‖ ≤ S .

slope 1/κκκ1/κκκ1/κκκ

S−S

z→ µµµ(z)

⇒⇒⇒ The more non-linear the
reward, the bigger κκκ. κκκ = 1000= 1000= 1000

∼ exp(z)∼ exp(z)∼ exp(z)

S−S

κκκ

z→ 1/µ̇̇µ̇µ(z)

⇒⇒⇒ κκκ ≥ exp(‖θ?‖2)
exponential growth !
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A key quantity (2/2)

κκκ characterizes the hardness of the learning problem.

I x1 and x2: almost always
same reward ← small
conditional variance.

I Typically:

‖θ̂t − θ?‖22 ∝ κκκ

where θ̂t is the maximum
likelihood estimator

κκκ large ⇔ estimating θ? is hard
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GLM-UCB-like algorithms
Bonus design: linearization and use of Vt =

∑t−1
s=1 xsx

>
s + λId.

prediction error︷ ︸︸ ︷
µ(xT θ̂t)− µ(xT θ?) ≤ LLL‖x‖Vt

−1‖θ̂t − θ?‖Vt

⇒ bonus(x) = LLLκκκ‖x‖Vt
−1

learning is hard

Notice:

LLL = worst-case prediction-wise
κκκ = worst-case parameter-wise

⇒ LLLκκκ = worst of both worlds!
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Challenges

Switch from a global (i.e Vt) to a local analysis through:

Ht(θ) =
t−1∑
s=1

µ̇(x>s θ)xsx
>
s + λId (1)

Design a local bonus thanks to:

µ(xT θ̂t)− µ(xTθ?) / µ̇(xT θ̂t)‖x‖H−1
t (θ̂t )

‖θ̂t − θ?‖Ht(θ̂t )

so easy prediction can cancel out hard learning.

Challenges:
I Control ‖θ̂t − θ?‖Ht(θ̂t ) to design a bonus (challenge 1)
I Prove that the bonus vanishes quickly (sub-linear regret) (challenge 2)

both independently of κκκ.
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Challenge 1: a novel tail-inequality

1. Let {xt}∞t=1 a Ft-adapted stochastic process in B2(d)

2. Let {εt}∞t=2 a Ft-adapted martingale difference sequence s.t:

|εt | ≤ 1, σ2
tσ
2
tσ
2
t := E[εt+1|Ft ] < +∞

Let λ > 0 and for any t ≥ 1 define:

St :=
t−1∑
s=1

εs+1xs Ht :=
t−1∑
s=1

σ2
sσ
2
sσ
2
s xsx

T
s + λId

Theorem (informal)
With probability at least 1− δ:

∀t ≥ 1, ‖St‖H−1
t

= O
(√

d log(t/δ)
)

Bernstein-equivalent of the tail-inequality for the Linear Bandit [Theorem

1, Abbasi-Yadkori. 2011]
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Challenge 1: improved deviation-bounds

Application to the Logistic Bandit. In the logistic model:

Proposition (Deviation-bound, informal)

∀t ≥ 1,
∥∥∥θ̂t − θ?∥∥∥

Ht(θ?)
≤ (1 + 2S)

√
d log(t) w.h.p

Improvement over past results. Using the linearization strategy and
the Linear Bandit tail-inequality:

∀t ≥ 1,
∥∥∥θ̂t − θ?∥∥∥

Vt
≤ κκκ

√
d log(t) w.h.p

⇒ from global to local
⇒ independent of κκκ

challenge 1: 4

Improved Optimistic Algorithms for Logistic Bandits 11 / 18



Challenge 2
With these results we can design the local bonus:

bonus(x , θ̂t) = µ̇(θ̂>t x)‖x‖H−1
t (θ̂t)

βt(δ) + Cκκκ‖x‖2V−1
t︸ ︷︷ ︸

second order term

with βt ∼
√
d log(t) and play:

xt = argmaxx∈Xt

[
µ(x>θ̂t) + bonus(x , θ̂t)

]
To finish the analysis, we need to bound:

T∑
t=1

bonus(xt , θ̂t) ≤ βT (δ)
T∑
t=1

µ̇(θ̂>t xt)‖x‖H−1
t (θ̂t)︸ ︷︷ ︸

leading regret term

+Cκκκ
T∑
t=1

‖xt‖2V−1
t︸ ︷︷ ︸

log(T )

?
≤
√
T ⇐ the bonus vanishes
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Challenge 2: admissible log-odds

Decreasing bonus ⇔ increasing information/knowledge.

Why it is not obvious.
I How is information measured? At round t:

I In MAB, for arm x :

#{xt = x , s ≤ t}

I In Linear Bandit:

‖x‖Vt

I In Logistic Bandits, for arm x :

‖x‖Ht (θ̂t )(
Ht(θ̂t) =

∑t−1
s=1 µ̇(x>s θ̂t)xsx

>
s + λId

)
What it means.

I Updating θ̂t can degrade past information
I ⇒ no reason the bonus should vanish!

increasing

??
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Challenge 2: admissible log-odds (ctn’d)
Solution (informal).

I Project θ̂t to a set of information-preserving estimators.
I Set of admissible log-odds:

Wt :=
{
θ, µ̇(x>s θ) ≥ µ̇(x>s θ̂s) for all s ≥ t − 1

}
I Notice:

θ̂t ∈ Wt ⇒ µ̇(x>s θ̂t) ≥ µ̇(x>s θ̂s)

⇒ Ht(θ̂t) �
t−1∑
s=1

µ̇(x>s θ̂s)xsx
>
s + λId := Lt

⇒ ‖x‖Ht(θ̂t ) ≥ ‖x‖Lt ← increasing!

I We can prove:

θ̂t ∈ Wt ⇒
T∑

t=1

µ̇(θ̂>t xt)‖x‖H−1
t (θ̂t )

≤ d
√
T + Cκκκ logT

challenge 2: 4

Improved Optimistic Algorithms for Logistic Bandits 14 / 18



LogUCB-2 (wrap-up)

Algorithm 1 Log-UCB2

Input: regularization parameter λ
Initialize the set of admissible log-odds W0 = Θ
for t ≥ 1 do
θ̃t = argminθ∈Wt∩Θ

∥∥∥gt(θ)− gt(θ̂t)
∥∥∥

H−1
t (θ)

←←← project θ̂t̂θt̂θt on WtWtWt

Observe the contexts-action feature set Xt .
Play xt = argmaxx∈Xt

µ(x>θ̃t) + bt(x).
Observe rewards rt+1.
Compute log-odds `t = supθ′∈Ct(δ) x

>
t θ
′. ←←← minimum information

Add the new constraint to the feasible set:

Wt+1 =Wt ∩ {θ : −`t ≤ θ>xt ≤ `t}.

end for
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LogUCB-2 (wrap-up)

Algorithm Regret Upper Bound Setting
GLM-UCB

[Filippi et al. 2010]
O
(
κκκκκκκκκ · d · T 1/2 · log(T )3/2

)
GLM

Thompson Sampling
[Abeille et Lazaric. 2017]

O
(
κκκκκκκκκ · d3/2 · T 1/2 log(T )

)
GLM

SupCB-GLM1

[Li et al. 2017]
O
(
κκκκκκκκκ · (d logK )1/2 · T 1/2 log(T )

)
GLM, K actions

LogUCB1
(this work) O

(
κκκ1/2κκκ1/2κκκ1/2 · d · T 1/2 log(T )

)
Logistic model

LogUCB2
(this work) O

(
d · T 1/2 log(T ) +κκκκκκκκκ · d2 · log(T )2

)
Logistic model

Comparison of frequentist regret guarantees for the logistic bandit with respect
to κκκ, d and T .
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Take-home messages

Critical dependence on κκκ.
I Linearization strategies ⇒ prohibitive practical performance

Tackled through a local analysis.
I new tail-inequality for self-normalized martingales
I self-concordance of log-loss

and information-preserving estimators.
I set of admissible log-odds.

Closing the gap with linear bandits
I RT = Õ

(
d
√
T + κκκ

)
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Thank you!
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