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Scope

Logistic Bandit.
» sequential decision making model.
» powerful extension to the Linear Bandit.
» binary reward, ubiquitous in applications of contextual bandits.

~ Bernoulli (11(x"6.))

NN

reward action logistic eRr
€{0,1} € X, function  (unknown)

Repeated game. At each round t:
1. Environment reveals X; € RY arbitrary arm-set (possibly infinite).
2. Player plays arm x; € X
3. Player receives the reward r(xt).
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Learning problem. Minimize cumulative pseudo-regret up to round T:
T

R(T) = 3 [argmax.c, u(6.Tx) <(0. ")
t=1

max reward in hindsight

Topic of this talk. We study a problem-dependent constant

» K measures the non-linearity of the reward signal.
» Kk can be very large, especially in real-life problems.

Why. Troublesome dependencies of existing algorithms

» exploration bonus x k y
» as a result: Regret(T) = O(kdV/'T).

Raise two major drawbacks

» practical: poor empirical performances.
» gap between linear and non-linear bandits.
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Contributions

Novel algorithm. LogUCB2 for which we prove:
Regret(T) = O(dV'T + k)

» reduced dependency in k.
» solves an open question since [Filippi et al. 2010].

Novel analysis with improved treatment of the reward’s non-linearity.

How. Old and new:

» self-concordance property of the logistic loss.
» new tail-inequality for self-normalized vectorial martingales.
» information-preserving projections.
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Optimistic algorithms

Exploration/exploitation trade-off via optimism (OFU).

» for generalized linear bandits [Filippi et al. 2010, Li et al. 2017]
» includes the logistic bandit

play x; = argmax, ¢, (0] x) + bonus(x)
—_—

exploitation exploration
Exploration bonus: mitigate some defects in the prediction
» designed by upper-bounding the prediction error:
bonus(x) > (6, x) — (8, x)

» The tighter the bonus, the better the algorithm
» For GLM-UCB [Filippi et al. 2010]:

bonus(x) x &
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A key quantity (1/2)

Non-linear reward signal: k as a distance from the Linear Bandit setting

K= 1/A(07 x) | when [|6.]] < S.

HXH2<1 H9Hz<5

z— 1/i(z)
slope 1/x
K
) S ) S
= The more non-linear the = Kk > exp(]|0«|l2)
reward, the bigger k. exponential growth !
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A key quantity (2/2)
 characterizes the hardness of the learning problem.

» x1 and x2: almost always
same reward < small
conditional variance.

» Typically:
18e — 043 o< =

where 0, is the maximum
likelihood estimator

K large < estimating 6, is hard
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GLM-UCB-like algorithms

e Bonus design: linearization and use of Vy = 3¢

s=

1 T
1 XsXs + Alg.
prediction error

u(x"0:) = p(x76.) < Lllx]lv, 216 — O.]lv,

= ‘ bonus(x) = Ln‘ﬂx”vta

e Notice:

L = worst-case prediction-wise

K = worst-case parameter—wise

= Lk = worst of both worlds!
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Challenges

e Switch from a global (i.e Vi) to a local analysis through:

H(0) = 3 o O + Mg )

s=1

e Design a local bonus thanks to:

plx"8e) = p(x"04) 5 fu(xT00) Il 10e = Bullin o,

so easy prediction can cancel out hard learning.

e Challenges:

» Control ||ét — G*HH[(ét) to design a bonus (challenge 1)
» Prove that the bonus vanishes quickly (sub-linear regret) (challenge 2)

both independently of .
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Challenge 1: a novel tail-inequality

1. Let {x:}3°, a Fi-adapted stochastic process in B(d)

2. Let {&:}$2, a Fi-adapted martingale difference sequence s.t:
lee] <1, 02 .= Eles1]Fi] < +o0

Let A > 0 and for any t > 1 define:

t—1 t—1
Se = He =) o2xx] + Al
t-— Es+1Xs t-— OsXsXg + Alg
s=1 s=1

Theorem (informal)

With probability at least 1 — §:

Vt > 1, [|Sellys = O (\/d |og(t/5))

Bernstein-equivalent of the tail-inequality for the Linear Bandit [Theorem
1, Abbasi-Yadkori. 2011]
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Challenge 1: improved deviation-bounds

Application to the Logistic Bandit. In the logistic model:

Proposition (Deviation-bound, informal)

Ve> 1, ‘

0y — 0, "

t(Ux

: < (1+42S)+/dlog(t) w.h.p

Improvement over past results. Using the linearization strategy and
the Linear Bandit tail-inequality:

v < k+/d log(t) w.h.p

= from global to local }challenge 1 v
= independent of

V> 1, ‘9}—9*
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Challenge 2

e With these results we can design the local bonus:

bonus(x, ) = (B x)||xl15,)8:(8) +  Crillx|[3
——

second order term

with 3; ~ \/dlog(t) and play:

X¢ = argmax, ¢y, [M(XTét) + bonus(x, ét)}

e To finish the analysis, we need to bound:

T

T T
Z bonus(xt, é\1:) < B71(9) Z /l(é;rxt)HXHHtfl(ét) +Ck Z”Xt“\z/t—l
t=1 t=1

t=1

leading regret term log(T)

?
<VT <« the bonus vanishes
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Challenge 2: admissible log-odds
Decreasing bonus < increasing information /knowledge.

Why it is not obvious.
» How is information measured? At round t:

» |n MAB, for arm x:
#{xt =x,s <t}
> In Linear Bandit: increasing
lIxllv,

> In Logistic Bandits, for arm x:

Iy} 7
(He(@) = S0 i ey + Mg
What it means.

» Updating 0: can degrade past information
» = no reason the bonus should vanish!
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Challenge 2: admissible log-odds (ctn’d)

Solution (informal).
» Project 0; to a set of information-preserving estimators.
» Set of admissible log-odds:

Wei= {0, i(x70) > s(x]0,) for all s > £ — 1}

» Notice:

0 € We = fu(x 0:) > u(x' 05)

t—
= H.(0:) = ZM(XS 0:)xsxs + Alg := Lt
=1

= [Ixllu,0,) = [l < increasing!

» We can prove:

-
0 e W = Zu(éjxt)HxHH;l(ét) <dVT+Crlog T

t=1

challenge 2: v
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LogUCB-2 (wrap-up)

Algorithm 1 Log-UCB?2

Input: regularization parameter A
Initialize the set of admissible log-odds W, = ©

for t >1do
0 = argmingcyy, no ‘ g:(0) — g:(0:) M) + project 6; on W;

Observe the contexts—actioaneature set X.

Play x; = argmax, ¢, u(x " 0¢) + be(x).

Observe rewards ry 1.

Compute log-odds ¢; = supg/cc,(s) x; 0. + minimum information
Add the new constraint to the feasible set:

Wia =Wen{0: —: <0 x; < {,}.

end for
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LogUCB-2 (wrap-up)

[Abeille et Lazaric. 2017]

Algorithm Regret Upper Bound Setting
GLM-ucs O(k-d-TY2. log(T)%?) GLM
[Filippi et al. 2010]
Thompson Sampling Ok 32 T2 log(T)) GLM

1
S[liPCtBl-Gzlo_J\:; O (k- (dlog K)Y/2 - T2 log( 7)) GLM, K actions
(L_l?igsuviii) O (kM2 -d - T'/?log(T)) Logistic model
(:ﬁiiuvfﬁi) O (d-T?log(T) + k- d?-log(T)?) | Logistic model

Comparison of frequentist regret guarantees for the logistic bandit with respect

tok, dand T.
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Take-home messages

Critical dependence on «.
» Linearization strategies = prohibitive practical performance

Tackled through a local analysis.

» new tail-inequality for self-normalized martingales
» self-concordance of log-loss

and information-preserving estimators.
» set of admissible log-odds.

Closing the gap with linear bandits
» Rr=0 (dﬁ + n)
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Thank you!




