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ALGORITHM AND REGRET BOUND

Logistic Bandits. Structured and binary bandit games; Learning. [Abeille et al., 2021] use variance-sensitive confidence sets: Algorithm. Combines forced-exploration and ECOLog;
- neat study of non-linearity in parametric bandits, OFU-ECOLog
- highly relevant in practice (sequential decision-making under binary feedback). Ci(8) = {9, ‘9 _ étH; o < dlog(t)}
t Y

Context - Perform 7 = k, rounds of forced exploration to obtain © such that:
ontext.

e | . <1
- fruitful stream of research on the impact of non-linearity in Logistic Bandits, o & (& witdn ligh preloe, g efem( @) < X

/

. t - Fort > 7:
- led to the development of statistically efficient (minimax-optimal) algorithms, 0, = arg minZgS(e) the MLE estimator, C,(6)
- however (prohibitively) computationally inefficient. < o =1 L. play the optimistic arm a; = arg max, ¢ 4 maxpee, () a'0,
t : .
2. receive ry;11, compute (0;11, Wy11) by running ECOLog.
W although well understood from a learning-theoretic standpoint, we are still missing fast H;(0) := Z,&(al@)asal + A\, . o (Be+ +1) =
algorithms for Logistic Bandits. \ s=1

Computational Cost. At each round at most O(d?|.A|log(t)) operations, since:
Expensive to maintain;

- ECOLog can be solved to arbitrary precision € at cost dlog(1/¢),

- ] ' ' | : C : : C :
testing membership ¢ € C¢(0) costs {2(¢) operations! - the confidence region is ellipsoidal; closed-form for the optimistic arm (exploration bonus).
- batch computation of the MLE,

LOGISTIC BANDITS - non-ellipsoidal confidence sets impacts the complexity of the planning mechanism. Regret Bounds. Minimax-optimal rates;

Reward model

- A C R?is the arm set, [Binary reward] Goal. New confidence sets for Logistic Bandits such that:
- 441 = r(a;) € {0,1} is the associated reward, T(a)NBernouni(,u(aTH*)) - sufficient statistics require O(1) operations, The regret of OFU-ECOLog satisfies with high probability:

- without sacrificing tightness.

. . Regret(T) < dv/T /K, + Ky .
[Non-linear link function] ECOLOG PROCEDURE
Learning problem

1
pu(z) = (1 + exp(—z)) ) Iterative Procedure. Given some convex set ©, compute estimators {6, }; of 6, through:

- 0, € R* unknown parameter.

Adaptive Version. ada-0FU-ECOLOG dilutes the warm-up throughout the learning.

.

At each step t < T

- based on a data-dependent width for the confidence regions,
- choose arm a; € A, ECOLog

receive reward 1 v/ preserves statistical efficiency while ultimately removing the need for forced-exploration,
- t+1-
1. 0; < argming g HH - 9t—1|‘37v + nly (0) ¢/ coherent with [Abeille et al. 2021]: low-order k, dependencies can sometimes be avoided.
Objective is to minimize regret: [ Regret(T) = Zle ‘maxgea p(a'0,) — play 0y)) J W W WTo T o
- W= Wi+ plag 0 )rara CONCLUSION
—-—_
E[r|a] where 1) = diam(©) is the learning-rate and /;(-) is the immediate log-loss. Joint statistical and computational efficiency;
Level of non-linearity ! ] _ | | S Algorithm Regret Bound | Cost Per-Round | Minimax | Efficient
Measured by a problem-dependent constant: Main Idea. Inspired from Online Convex Optimization literature [Jézéquel et al., 2020]; [F,I,GPM;UICBQON] 5 (K,*d\/T) O (IAT) y y
[ k, := 1/p(maxa’6,) ] - based on /ocal quadratic lower-bounds for the logistic-loss: GIIZI;JC DI;QM
o acA * | o :
| — (4(8.) > £(6) + V4(0)T (6, — 0) + (a] 0)(a] (6, — 6))* S O (ruaT) O (&I " g
- (inverse of) minimal variance, [Zhang et al. 2016]
- "distance to linearity" over the decision set, slope 1/k, - decompose the total log-loss £,(0) := Zizl (s(0,) as: " QEULOgI—;m] O (d\/m) O (d?|A|T) v X
- typically large as k, ~ exp([|0,]]). i crle et Al
- o, Lo(8) = L1 1(0) +1,(0) = 7 (0 = 6,0) "W, T (0~ 61) + 1,(0) 2dan)OFUECOLoE | 6 (ay/T/k. ) O (2|A) v v
dm oo {____}f ______ N (this paper)
acA

- minimize this strongly convex proxy to obtain 6; at O(d?) cost.

Numerical simulations corroborates theoretical results:
MINIMAX-OPTIMALITY

Minimax-Optimal algorithms w.r.t T, d and &, Confidence Regions. Emulates the confidence set C;(9) through Wy;

Regret(7T) Total complexity (# operations) Regret(T)
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[Abeille et al., AISTATS'21] [ Regret(T) < dv/T/ky (4 Ky) ] 1000 | | — ada-0FU-ECOLog |

Let 0 € (0,1]. If 6, € O then:

10,000

=l OFULog-r

M7 exponential improvement over previous approaches. E,(8) = {HH _ etuivt < exp(n)dlog(t/é)} 500 | N 5,000 |
2 the more non-linear the problem, the easier! — —
c . - ! ! ! ! T + ? : : : : : T,
W2 matching lower-bound. is a confidence region for 0,; P(0, € £(d)) > 1—0. 1000 2000 3000 1000 2000 3000 5,000 10,000 15,000 20,000 25,000
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Optimistic algorithm based on confidence region C;(9); play a; = arg max 4 maxgec,(5)a' 0.

M2 local behavior captured through ©, an admissible parameter-set.
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