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Presentation Outline

Goal.
I Study non-linearity in sequential decision making.
I A simple problem: the Logistic Bandit.

Compact non-linear extension to the Linear Bandit.
Very relevant in practical problems with binary feedback.

Logistic Bandit: high-level contributions.
I [Filippi et al. 2010, Faury et al. 2020]: non-linearity is harmful. Actually:

Non-linearity can make the problem easier.

I Identify two distinct regimes:
Short-term ↔ early exploration phase: neutral (most often).
Long-term ↔ exploration-exploitation phase: beneficial.
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The Learning Problem

Repeated game with structured binary feedback.

Agent

Environment

xtxtxt rtrtrt ∼∼∼ Bernoulli
(
µµµ(xtxtxt

>θ?θ?θ?)
)

reward
∈ {0, 1}∈ {0, 1}∈ {0, 1}

action
∈ X∈ X∈ X

logistic function ∈ Rd∈ Rd∈ Rd

(unknown)

Regret. The agent tries to minimize its cumulative pseudo-regret:

Regretθ?(T ) := T max
x∈X

µ(x>θ?θ?θ?)−
T∑

t=1

µ(xtxtxt
>θ?θ?θ?) .
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The Learning Problem (ctn’d)

Reward model. Minimalist non-linear extension from the linear bandit.
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θ?θ?θ?
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[
rtrtrt
∣∣xtxtxt] = xtxtxt

Tθ?θ?θ?
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X

θ?θ?θ?

E
[
rtrtrt
∣∣xtxtxt] = (1 + exp(−xtxtxtTθ?θ?θ?))−1

Exploration-exploitation. Same recipe:
I Learning: maximum likelihood.
I Planning: Optimism through confidence sets.

Additional challenge. Non-linearity: information vs. regret.
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Quantifying non-linearity

Level of non-linearity =
conditioning.
I How flat are the tails.

{xxx ∈ X}

XXX

θ?θ?θ?

xxx>θ?θ?θ?

E[r |x ]

Important quantities. The level of non-linearity is problem-dependent.

I Historically characterized by a constant κκκX :

κκκX :=
1

minxxx∈X µ̇(xxx>θ?θ?θ?)
.

I Inverse slope at the optimum; letting x? = argmaxxxx∈X xxx>θ?θ?θ?:

κκκ? :=
1

µ̇(x>? θ?θ?θ?)
.
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Non-linearity vs. regret: previous work

Approach Regret

[Filippi et al. 2010]
Linearization (global) Õ

(
κκκXd
√
T
)

[Faury et al. 2020]
Self-concordance (local) Õ

(
d
√
T + κκκX

)
This work

Refined local approach Õ
(
d
√

T/κκκ? (+κκκX )
)

Exponential improvement. If XXX = {‖x‖ ≤ 1} then κκκX = κκκ? ≥ e‖θ?θ?θ?‖ then
regret:

Õ(e‖θ?θ?θ?‖d
√
T ) −→ Õ(d

√
T + e‖θ?θ?θ?‖) −→ Õ(e−−−‖θ?θ?θ?‖/2d

√
T )
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Regret Upper-Bound

Effects of non-linearity: transitory and permanent regime.

Regretθ?θ?θ?(T ) = Rperm(T ) + Rtrans(T )
aaaaaaa︸ ︷︷ ︸
Õ(
√
T )Õ(
√
T )Õ(
√
T )

aaaaaaa︸ ︷︷ ︸
Õ(1)Õ(1)Õ(1)

Permanent regime. For t � 1, only the local slope around x? matters.
I Conceptually:

- Sub-linear regret play mostly xt ≈ x? for large t.
- Linear bandit with slope µ̇(x>? θ?θ?θ?) =

1
κκκ?

(potentially � 1).
I The smaller this local slope, the easier the problem:

Rperm(T ) = Õ
(
d
√

T/κκκ?
)
.

- Formal proof: self-concordance.
I Question: how long to reach it?

≈ exp(‖θ?θ?θ?‖)!
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√
T )Õ(
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Regret Upper Bounds (ctn’d)

Transitory Regret. Also linked to the problem’s geometry..
I Proportion of detrimental arms: little information and large sub-optimality.

XXX

θ?θ?θ?

X−X−X−

variance ∝ 1/κκκX

gap ≈ 1/2

R trans(T ) = Õ(κκκX )

XXX

θ?θ?θ?

X−X−X−

plenty of
good arms

R trans(T ) = Õ(1)

I Transitory regret = how long are we stuck playing detrimental arms?

Rtrans(T ) ∝
T∑

t=1

1(xt ∈ X−)
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I Transitory regret = how long are we stuck playing detrimental arms?

Rtrans(T ) ∝
T∑

t=1

1(xt ∈ X−)

Instance-Wise Minimax-Optimal Algorithms for Logistic Bandits 8 / 13



Regret Upper Bounds (ctn’d)

Wrapping up.

Theorem (Regret upper-bound)
With high probability:

Regretθ?θ?θ?(T ) = Õ
(
d
√

T/κκκ? + (κκκX )
)

Refined problem-dependent bounds:

I Worst configuration.

Regretθ?θ?θ?(T ) = Õ(d
√
T + κκκX )

I Best configuration.

Regretθ?θ?θ?(T ) = Õ(d
√

T/κκκX )

Is this optimal?
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√
T + κκκX )

I Best configuration.

Regretθ?θ?θ?(T ) = Õ(d
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Problem-dependent lower-bound

Challenge. Study optimality w.r.t problem-dependent constants κκκX .
I Lower-bound for a continuum of problems, each with different κκκX .
I Traditional lower-bound technique fails.

Theorem (A local lower-bound)
Let X = {‖x‖ = 1}, fix θ? ∈ Rd and denote κ = κ?(θ?). For any policy

max
‖θ′−θ?‖≤ε

Regretθ′(T ) = Ω
(
d
√

T/κ
)

if T ≥ κ

where ε is such that ∀θ′ ∈ {‖θ′ − θ‖ ≤ ε we have κ?(θ′) = Θ(κ).

Interpretation. For any problem:
I Consider the hardest alternative in nearby instances.
I That share the same problem-dependent constant κκκ?.

Conclusion. The long-term regret is tight.
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Algorithm
Algorithm. OFULog:
I Relies on the confidence set Ct(δ) of [Faury et al. 2020].1

I Parameter-based optimism (vs. bonus-based)

xtxtxt = max
x∈X

max
θ∈Ct (δ)

x>θ (max
x∈X

µ(x>θ̂t) + εt(x))

- More adaptive to the problem effective’s hardness.
- Tractable algorithm (no non-convex optimization routines).

In practice. Large improvement on the regret.

2,000 4,000 6,000 8,000

100

200

300

400

T

Regret(T )

κ = 50

2,000 4,000 6,000 8,000

100

200

300

400

500

T

Regret(T )

κ = 400

GLM-UCB

LogUCB1

OFULog

1We also introduce a convex relaxation which leads to a fully tractable algorithm
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See you at the Q&A!
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